• Title/Summary/Keyword: interleukin-21

Search Result 306, Processing Time 0.025 seconds

Induction of osteoclastogenesis-inducing cytokines and invasion by alive Aggregatibacter actinomycetemcomitans in osteoblasts (조골세포에서 Aggregatibacter actinomycetemcomitans 생균의 파골세포분화유도 cytokine 발현 유도능 및 침투능)

  • Choi, Ho-Kil;Lee, Yang-Sin;Kim, Min-Young;Kim, Kyoung-Dae;Cha, Jeong-Heon;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.553-562
    • /
    • 2007
  • Osteoblasts regulate osteoclastogenesis by production of various cytokines. Aggregatibacter(A) ac-tinomycetemcomitans is one of periodontopathogens which invades gingival tissue. Therefore, clarifying the effect of alive A. actinomycetemcomitans on osteoblasts is important to understand the mechanism of alveolar bone resorption in periodontitis. We investigated induction of osteoclastogenesis-inducing cytokines, adherence, and invasion by A. actinomycetemcomitans in osteoblasts. Osteoblasts were isolated from mouse calvaria and expression of cytokines was determined by RT-PCR. When the ratio of the number of A. actinomycetemcomtians to the number of osteoblasts was 10:1, 50:1 and 100:1, RANKL mRNA expression was increased. A. actinomycetemcomitans also increased expression of macrophage inflammatory protein (MIP) -1${\alpha}$, interleukin (IL)-1${\beta}$, and tumor necrosis factor (TNF)-${\alpha}$. A. actinomycetemcomitans attached to and invaded osteoblasts at ratio of 1000:1. These results suggest that A. actinomycetemcomitans increases osteoclastogenesis-inducing ability of osteoblasts by stimulating the expression of RANKL, MIP-1${\alpha}$,IL-1${\beta}$, and TNF-${\alpha}$ and that invasion of A. actinomycetemcomitans provides a means by which the bacteria escape from immune system and antibiotic therapy.

The Association between Food Group Consumption Patterns and Early Metabolic Syndrome Risk in Non-Diabetic Healthy People

  • Yeo, Rimkyo;Yoon, So Ra;Kim, Oh Yoen
    • Clinical Nutrition Research
    • /
    • v.6 no.3
    • /
    • pp.172-182
    • /
    • 2017
  • We investigated the association between dietary habits/food group consumption patterns and early risk of metabolic syndrome (MetS), a main cause for metabolic disease. Study participants were recruited from the health promotion center in Dong-A University Hospital and public advertisement. Study subjects (n = 243, 21-80 years) were categorized into three groups: Super-healthy (MetS risk factor [MetS RF] = 0, n = 111), MetS-risk carriers (MetS RF = 1-2, n = 96), and MetS (MetS $RF{\geq}3$, n = 27). Higher regularity in dietary habits (breakfast-everyday, regular eating time, non-frequent overeating, and non-frequent eating-out) was observed in the Super-healthy group than in the MetS-risk carriers, and particularly in the MetS subjects. The relationship between food group consumption patterns and MetS-risk related parameters were investigated with adjustment for confounding factors. Fruit consumption was positively associated with HDL-cholesterol, and tended to be negatively associated with waist circumference, triglyceride, LDL-cholesterol, and insulin resistance (IR). The consumption of low-fat meats and fish, and vegetables was negatively associated with hs-CRP. Specifically, the consumption of seafoods belonging to the low-fat fish was negatively associated with fasting glucose, hs-CRP, and interleukin (IL)-6. Anchovy/dried white baits consumption was negatively associated with fasting insulin and IR. Green-yellow vegetables consumption was negatively associated with fasting insulin, IR, and hs-CRP. On the other hand, sugars and fast-foods were positively associated with LDL-cholesterol. Additionally, fast-foods consumption was positively associated with hs-CRP and IL-6 levels. In conclusion, dietary habits/food group consumption patterns are closely associated with MetS-risk related parameters in Koreans. It may suggest useful information to educate people to properly select healthy foods for early prevention of MetS.

Renal protective effects of zingerone in a mouse model of sepsis

  • Lee, Bong-Seon;Lee, Changhun;Yang, Sumin;Ku, Sae-Kwang;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to possess pharmacological activities such as anti-inflammatory and anti-apoptotic effects. This study was initiated to determine whether ZGR could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of ZGR treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with ZGR resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, ZGR inhibited nuclear $factor-{\kappa}B$ activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. ZGR treatment also reduced the plasma levels of interleukin-6 and tumor necrosis $factor-{\alpha}$, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study showed renal suppressive effects of zingerone in a mouse model of sepsis, suggesting that ZGR protects mice against sepsis-triggered renal injury.

Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health and apparent ileal digestibility of diets fed to nursery pigs

  • Cheng, Yi-Chi;Duarte, Marcos Elias;Kim, Sung Woo
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.605-613
    • /
    • 2022
  • Objective: The objective was to evaluate the efficacy of increasing supplementation of Yarrowia lipolytica (YL) up to 3.0% replacing 1.6% poultry fat and 0.9% blood plasma for growth performance, intestinal health and nutrient digestibility of diets fed to nursery pigs. Methods: Twenty-four pigs weaned at 24 d of age (initial body weight at 7.2±0.6 kg) were allotted to three dietary treatments (n = 8) based on the randomized complete block. The diets with supplementation of YL (0.0%, 1.5%, and 3.0%, replacing poultry fat and blood plasma up to 1.6% and 0.9%, respectively) were fed for 21 d. Feed intake and body weight were recorded at d 0, 10, and 21. Fecal score was recorded at every odd day from d 3 to 19. Pigs were euthanized on d 21 to collect proximal and distal jejunal mucosa to measure intestinal health markers including tumor necrosis factor-alpha, interleukin-8, immunoglobulin A and immunoglobulin G. Ileal digesta was collected for apparent ileal digestibility (AID) of nutrients in diets. Data were analyzed using Proc Mixed of SAS. Results: Supplementation of YL (1.5% and 3.0%) replacing poultry fat and blood plasma did not affect growth performance, fecal score and intestinal health. Supplementation of YL at 1.5% did not affect nutrient digestibility, whereas supplementation of YL at 3.0% reduced AID of dry matter (40.2% to 55.0%), gross energy (44.0% to 57.5%), crude protein (52.1% to 66.1%), and ether extract (50.8% to 66.9%) compared to diets without supplementation. Conclusion: Yarrowia lipolytica can be supplemented at 1.5% in nursery diets, replacing 0.8% poultry fat and 0.45% blood plasma without affecting growth performance, intestinal health and nutrient digestibility. Supplementation of YL at 3.0% replacing 1.6% poultry fat and 0.9% blood plasma did not affect growth performance and intestinal health, whereas nutrient digestibility was reduced.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

Role of Dual Oxidase 2 in Reactive Oxygen Species Production Induced by Airborne Particulate Matter PM10 in Human Epidermal Keratinocytes (인간 표피 각질형성세포에서 대기 미립자 물질 PM10에 의해 유도되는 반응성 산소종의 생성에서 Dual oxidase 2의 역할)

  • Seok, Jin Kyung;Choi, Min A;Ha, Jae Won;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Particulate matters with a diameter of < $10{\mu}m$ (PM10) exert oxidative stress and inflammatory events in various organs. The purpose of this study was to examine the molecular mechanism of reactive oxygen species (ROS) production induced by PM10 in the human epidermal keratinocytes (HEKs). When cultured HEKs were exposed to PM10, ROS production was induced and it was inhibited by apocynin, an antioxidant. The mRNA expression of NADPH oxidase (NOX) family was analyzed in order to examine their role in PM10-induced ROS production. PM10 increased the mRNA expression of NOX1, NOX2, dual oxidase (DUOX) 1 and DUOX2. HEKs expressed DUOX1 and DUOX2 at higher levels compared to other NOXs. The mRNA expression of dual oxidase maturation factors, DUOXA1 and DUOXA2, was also increased by PM10. We examined whether these calcium-dependent enzymes, DUOX1 and DUOX2, mediate the PM10-induced ROS production. A selective intracellular calcium chelator, BAPTA-AM, attenuated ROS production induced by PM10 or calcium ionophore A23187. The small intereference RNA (siRNA)-mediated down-regulation of DUOX2, but not DUOX1, attenuated the ROS production induced by PM10. PM10 increased the expression of inflammatory cytokines such as interleukin $(IL)-1{\beta}$, IL-6, IL-8 and interferon $(IFN)-{\gamma}$. SiRNA-mediated down-regulation of DUOX2 suppressed the PM10-induced expression of $IFN-{\gamma}$ but not other cytokines. This study suggests that DUOX2 plays a crucial role in ROS production and inflammatory response in PM10-exposed keratinocytes.

Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

  • Han, Jie;Bian, Lianquan;Liu, Xianjun;Zhang, Fei;Zhang, Yiran;Yu, Ning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1035-1043
    • /
    • 2014
  • To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing $2{\times}2$ factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of $7.25{\pm}0.21kg$) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between $LPS{\times}ASPS$ was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between $LPS{\times}ASPS$ was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-${\alpha}$ were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-$1{\beta}$, IL-6 as well as TNF-${\alpha}$ (p<0.05). The interaction between $LPS{\times}ASPS$ was also observed on the circulating concentration of insulin-like growth factor-I, ${\alpha}$-acid glycoprotein (${\alpha}$-AGP), nonesterified fatty acid, and glucose (p<0.05). The results of this study demonstrate that dietary ASPS can modulate the release of pro-inflammatory cytokines during immunological challenge, which might enable piglets to achieve better growth performance.

Evaluation of osteogenic activity of periosteal-derived cells treated with inflammatory cytokines (골막기원세포의 조골세포로의 분화과정에서 염증성 사이토카인의 효과)

  • Park, Bong-Wook;Choi, Mun-Jeoung;Hah, Young-Sool;Cho, Hee-Young;Kim, Deok-Ryong;Kim, Uk-Kyu;Kang, Hee-Jea;Kim, Jong-Ryoul;Byun, June-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.341-345
    • /
    • 2010
  • Introduction: Skeletal homeostasis is normally maintained by the stability between bone formation by osteoblasts and bone resorption by osteoclasts. However, the correlation between the inflammatory reaction and osteoblastic differentiation of cultured osteoprogenitor cells has not been fully investigated. This study examined the effects of inflammatory cytokines on the osteoblastic differentiation of cultured human periosteal-derived cells. Materials and Methods: Periosteal-derived cells were obtained from the mandibular periosteum and introduced into the cell culture. After passage 3, the periosteal-derived cells were further cultured in an osteogenic induction Dulbecco's modified Eagle's medium (DMEM) medium containing dexamethasone, ascorbic acid, and $\beta$-glycerophosphate. In this culture medium, tumor necrosis factor (TNF)-$\alpha$ with different concentrations (0.1, 1, and 10 ng/mL) or interleukin (IL)-$1{\beta}$ with different concentrations (0.01, 0.1, and 1 ng/mL) were added. Results: Both TNF-$\alpha$ and IL-$1{\beta}$ stimulated alkaline phosphatase (ALP) expression in the periosteal-derived cells. TNF-$\alpha$ and IL-$1{\beta}$ increased the level of ALP expression in a dose-dependent manner. Both TNF-$\alpha$ and IL-$1{\beta}$ also increased the level of alizarin red S staining in a dose-dependent manner during osteoblastic differentiation of cultured human periosteal-derived cells. Conclusion: These results suggest that inflammatory cytokines TNF-$\alpha$ and IL-$1{\beta}$ can stimulate the osteoblastic activity of cultured human periosteal-derived cells.

Anti-Inflammatory Effect of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus Complex Extracts in Raw 264.7 Cells (곰취(Ligularia fischeri), 미역취(Solidago virga-aurea), 삼나물(Aruncus dioicus) 복합 추출물의 항염증 효과)

  • Kim, Dong-Hee;An, Bong-Jeun;Kim, Se-Gie;Park, Tae-Soon;Park, Gun-Hye;Son, Jun-Ho
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.678-683
    • /
    • 2011
  • The objective of this study was to evaluate the skin inflammation effects of three herb mixture extracts, Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus, which are from Ullung island in Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% acetone extracts of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus (LSA-A) and further cultured for an appropriated time after lipopolyssacharide (LPS) addition. During the entire experimental period, 1, 10, and 100 ${\mu}g/ml$ of LSA-A had no cytotoxicity. In these concentrations, LSA-A inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-a), interleukin-1${\beta}$ (IL-1${\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). LSA-A showed a 60% $PGE_2$ inhibition rate at 100 ${\mu}g/ml$. iNOS and COX-2 inhibition activities were 54%, and 65% at 100 ${\mu}g/ml$, respectively. In addition, LSA-A extract reduced the release of inflammatory cytokines including TNF-a, IL-1${\beta}$ and IL-6. These results suggest that LSA-A may have significant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic agent.

Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat

  • Ra, Ho Jong;Lee, Hyun Jae;Jo, Ho Seung;Nam, Dae Cheol;Lee, Young Bok;Kang, Byeong Hun;Moon, Dong Kyu;Kim, Dong Hee;Lee, Choong Jae;Hwang, Sun-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ ($IL-1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.