Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.1.57

Role of Dual Oxidase 2 in Reactive Oxygen Species Production Induced by Airborne Particulate Matter PM10 in Human Epidermal Keratinocytes  

Seok, Jin Kyung (Department of Molecular Medicine, BK21PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University)
Choi, Min A (Department of Molecular Medicine, BK21PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University)
Ha, Jae Won (Department of Molecular Medicine, BK21PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University)
Boo, Yong Chool (Department of Molecular Medicine, BK21PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.1, 2019 , pp. 57-67 More about this Journal
Abstract
Particulate matters with a diameter of < $10{\mu}m$ (PM10) exert oxidative stress and inflammatory events in various organs. The purpose of this study was to examine the molecular mechanism of reactive oxygen species (ROS) production induced by PM10 in the human epidermal keratinocytes (HEKs). When cultured HEKs were exposed to PM10, ROS production was induced and it was inhibited by apocynin, an antioxidant. The mRNA expression of NADPH oxidase (NOX) family was analyzed in order to examine their role in PM10-induced ROS production. PM10 increased the mRNA expression of NOX1, NOX2, dual oxidase (DUOX) 1 and DUOX2. HEKs expressed DUOX1 and DUOX2 at higher levels compared to other NOXs. The mRNA expression of dual oxidase maturation factors, DUOXA1 and DUOXA2, was also increased by PM10. We examined whether these calcium-dependent enzymes, DUOX1 and DUOX2, mediate the PM10-induced ROS production. A selective intracellular calcium chelator, BAPTA-AM, attenuated ROS production induced by PM10 or calcium ionophore A23187. The small intereference RNA (siRNA)-mediated down-regulation of DUOX2, but not DUOX1, attenuated the ROS production induced by PM10. PM10 increased the expression of inflammatory cytokines such as interleukin $(IL)-1{\beta}$, IL-6, IL-8 and interferon $(IFN)-{\gamma}$. SiRNA-mediated down-regulation of DUOX2 suppressed the PM10-induced expression of $IFN-{\gamma}$ but not other cytokines. This study suggests that DUOX2 plays a crucial role in ROS production and inflammatory response in PM10-exposed keratinocytes.
Keywords
airborne particulate matters; dual oxidase 2; reactive oxygen species; calcium ion; keratinocytes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. J. Badyda, J. Grellier, and P. Dabrowiecki, Ambient PM2.5 Exposure and Mortality Due to Lung Cancer and Cardiopulmonary Diseases in Polish Cities, Adv. Exp. Med. Biol., 944, 9 (2017).   DOI
2 G. Cesaroni, C. Badaloni, C. Gariazzo, M. Stafoggia, R. Sozzi, M. Davoli, and F. Forastiere, Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome, Environ. Health Perspect., 121(3), 324 (2013).   DOI
3 A. Iskandar, Z. J. Andersen, K. Bonnelykke, T. Ellermann, K. K. Andersen, and H. Bisgaard, Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children, Thorax, 67(3), 252 (2012).   DOI
4 A. Zanobetti, J. Schwartz, E. Samoli, A. Gryparis, G. Touloumi, J. Peacock, R. H. Anderson, A. Le Tertre, J. Bobros, M. Celko, A. Goren, B. Forsberg, P. Michelozzi, D. Rabczenko, S. P. Hoyos, H. E. Wichmann, and K. Katsouyanni, The temporal pattern of respiratory and heart disease mortality in response to air pollution, Environ. Health Perspect., 111(9), 1188 (2003).   DOI
5 J. Lademann, H. Schaefer, N. Otberg, A. Teichmann, U. Blume-Peytavi, and W. Sterry, Penetration of microparticles into human skin, Hautarzt, 55(12), 1117 (2004).   DOI
6 K. Ahn, The role of air pollutants in atopic dermatitis, J. Allergy Clin. Immunol., 134(5), 993 (2014).   DOI
7 S. H. Jeong, J. H. Park, J. N. Kim, Y. H. Park, S. Y. Shin, Y. H. Lee, Y. C. Kye, and S. W. Son, Up-regulation of TNF-alpha secretion by cigarette smoke is mediated by Egr-1 in HaCaT human keratinocytes, Exp. Dermatol., 19(8), e206 (2010).   DOI
8 Y. S. Yang, H. K. Lim, K. K. Hong, M. K. Shin, J. W. Lee, S. W. Lee, and N. I. Kim, Cigarette smoke-induced interleukin-1 alpha may be involved in the pathogenesis of adult acne, Ann Dermatol, 26(1), 11 (2014).   DOI
9 S. P. Yun, S. J. Lee, S. Y. Oh, Y. H. Jung, J. M. Ryu, H. N. Suh, M. O. Kim, K. B. Oh, and H. J. Han, Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells, Br. J. Pharmacol., 171(13), 3283 (2014).   DOI
10 G. Tsuji, M. Takahara, H. Uchi, S. Takeuchi, C. Mitoma, Y. Moroi, and M. Furue, An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway, J. Dermatol. Sci., 62(1), 42 (2011).   DOI
11 M. Katsuyama, K. Matsuno, and C. Yabe-Nishimura, Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme, J. Clin. Biochem. Nutr, 50(1), 9 (2012).   DOI
12 S. Song, K. Lee, Y. M. Lee, J. H. Lee, S. I. Lee, S. D. Yu, and D. Paek, Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis, Environ. Res., 111(3), 394 (2011).   DOI
13 R. P. Brandes, N. Weissmann, and K. Schroder, Nox family NADPH oxidases: Molecular mechanisms of activation, Free Radic. Biol. Med., 76, 208 (2014).   DOI
14 K. Bedard, and K. H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev., 87(1), 245 (2007).   DOI
15 C. Hoste, J. E. Dumont, F. Miot, and X. De Deken, The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA, Exp. Cell. Res., 318(18), 2353 (2012).   DOI
16 C. Massart, C. Hoste, A. Virion, J. Ruf, J. E. Dumont, and J. Van Sande, Cell biology of $H_2O_2$ generation in the thyroid: investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines, Mol. Cell. Endocrinol., 343(1-2), 32 (2011).   DOI
17 N. A. Monteiro-Riviere, A. O. Inman, and J. E. Riviere, Skin toxicity of jet fuels: ultrastructural studies and the effects of substance P, Toxicol Appl Pharmacol, 195(3), 339 (2004).   DOI
18 D. U. Lee, M. J. Ji, J. Y. Kang, S. Y. Kyung, and J. H. Hong, Dust particles-induced intracellular $Ca^{2+}$ signaling and reactive oxygen species in lung fibroblast cell line MRC5, Korean J. Physiol. Pharmacol., 21(3), 327 (2017).   DOI
19 X. De Deken, D. Wang, M. C. Many, S. Costagliola, F. Libert, G. Vassart, J. E. Dumont, and F. Miot, Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family, J. Biol. Chem., 275(30), 23227 (2000).   DOI
20 J. E. Toublanc, Comparison of epidemiological data on congenital hypothyroidism in Europe with those of other parts in the world, Horm. Res., 38(5-6), 230 (1992).   DOI
21 G. K. Menon, and P. M. Elias, Ultrastructural localization of calcium in psoriatic and normal human epidermis, Arch Dermatol, 127(1), 57 (1991).   DOI
22 R. B. Presland, J. A. Bassuk, J. R. Kimball, and B. A. Dale, Characterization of two distinct calcium-binding sites in the amino-terminus of human profilaggrin, J. Invest. Dermatol., 104(2), 218 (1995).   DOI
23 K. Hitomi, Transglutaminases in skin epidermis, Eur J Dermatol, 15(5), 313 (2005).
24 T. Hill, 3rd, and R. H. Rice, DUOX expression in human keratinocytes and bronchial epithelial cells: Influence of vanadate, Toxicol In Vitro, 46, 257 (2018).   DOI
25 R. W. Harper, C. Xu, J. P. Eiserich, Y. Chen, C. Y. Kao, P. Thai, H. Setiadi, and R. Wu, Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium, FEBS Lett., 579(21), 4911 (2005).   DOI
26 M. Abe, Y. Yokoyama, T. Syuto, H. Ishibuchi, and O. Ishikawa, Interleukin-6 counteracts effects of cyclosporin A on extracellular matrix metabolism by human dermal fibroblasts, Cell Tissue Res., 333(2), 281 (2008).   DOI
27 H. J. Kim, C. H. Kim, J. H. Ryu, M. J. Kim, C. Y. Park, J. M. Lee, M. J. Holtzman, and J. H. Yoon, Reactive oxygen species induce antiviral innate immune response through IFN-lambda regulation in human nasal epithelial cells, Am. J. Respir. Cell Mol Biol., 49(5), 855 (2013).   DOI
28 M. Federici, M. L. Giustizieri, C. Scarponi, G. Girolomoni, and C. Albanesi, Impaired IFN-gammadependent inflammatory responses in human keratinocytes overexpressing the suppressor of cytokine signaling 1, J. Immunol., 169(1), 434 (2002).   DOI
29 T. Hill, 3rd, C. Xu, and R. W. Harper, IFNgamma mediates DUOX2 expression via a STAT-independent signaling pathway, Biochem. Biophys. Res. Commun., 395(2), 270 (2010).   DOI
30 M. J. Bechtel, J. Reinartz, J. M. Rox, S. Inndorf, B. M. Schaefer, and M. D. Kramer, Upregulation of cell-surface-associated plasminogen activation in cultured keratinocytes by interleukin-1 beta and tumor necrosis factor-alpha, Exp. Cell. Res., 223(2), 395 (1996).   DOI
31 G. Michel, L. Kemeny, R. U. Peter, A. Beetz, C. Ried, P. Arenberger, and T. Ruzicka, Interleukin-8 receptor-mediated chemotaxis of normal human epidermal cells, FEBS Lett., 305(3), 241 (1992).   DOI
32 R. Mittler, ROS are good, Trends Plant Sci., 22(1), 11 (2017).   DOI
33 M. Ristow, Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits, Nat. Med., 20(7), 709 (2014).   DOI
34 H. Kawagishi, and T. Finkel, Unraveling the truth about antioxidants: ROS and disease: finding the right balance, Nat. Med., 20(7), 711 (2014).   DOI
35 M. A. Choi, J. K. Seok, J. W. Lee, S. Y. Lee, Y. M. Kim, and Y. C. Boo, Effects of resveratrol and resveratryl triacetate on the inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10, J. Soc. Cosmet. Sci. korea, 44(3), 249 (2018).   DOI
36 P. Ghezzi, V. Jaquet, F. Marcucci, and H. Schmidt, The oxidative stress theory of disease: levels of evidence and epistemological aspects, Br. J. Pharmacol., 174(12), 1784 (2017).   DOI
37 J. K. Seok, J. W. Lee, Y. M. Kim, and Y. C. Boo, Punicalagin and (-)-Epigallocatechin-3-Gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10, Skin Pharmacol. Physiol., 31(3), 134 (2018).   DOI
38 J. W. Lee, J. K. Seok, and Y. C. Boo, Ecklonia cava extract and dieckol attenuate cellular lipid peroxidation in keratinocytes exposed to PM10, Evid.-Based Complementary Altern. Med., 2018, 8248323 (2018).
39 S. Park, J. K. Seok, J. Y. Kwak, H. J. Suh, Y. M. Kim, and Y. C. Boo, Anti-inflammatory effects of Pomegranate Peel extract in THP-1 cells exposed to particulate matter PM10, Evid.-Based Complementary Altern. Med., 2016, 836080 (2016).
40 A. Rauf, M. Imran, H. A. R. Suleria, B. Ahmad, D. G. Peters, and M. S. Mubarak, A comprehensive review of the health perspectives of resveratrol, Food Funct., 8(12), 4284 (2017).   DOI
41 C. A. Pope, 3rd, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 287(9), 1132 (2002).   DOI
42 J. M. Samet, F. Dominici, F. C. Curriero, I. Coursac, and S. L. Zeger, Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994, N. Engl. J. Med., 343(24), 1742 (2000).   DOI
43 K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sciences, 152, 126 (2016).   DOI