• Title/Summary/Keyword: interleukin (IL)-6

Search Result 1,603, Processing Time 0.026 seconds

Analysis of antioxidant and anti-inflammatory effects of Mongolian wild lingonberry and blueberry, and identification of their bioactive compounds (몽골 야생 링곤베리와 블루베리의 항산화, 항염증 효과 및 생리활성 물질 분석 연구)

  • Lee, Hye Ju;Naranbulag, Batdorj;Jeong, Seung Jin;Seo, Chan;Lee, Sang-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • The Mongolian lingonberry and blueberry are two essential food sources found in Mongolia. This study investigated the antioxidant and anti-inflammatory effects of methanol extracts from Mongolian lingonberry (LBE) and blueberry (BBE). Compared to the LBE, the BBE showed higher total phenolic, flavonoid, and anthocyanin contents, as well as antioxidant capacities. The LBE and BBE inhibited the mRNA expression of pro-inflammatory genes, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase (COX-2) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. In addition, the LBE and BBE inhibited NADPH oxidase-2 (Nox2) mRNA expression, indicating that they have cellular antioxidant capacities. Anthocyanin derivatives of the LBE and BBE were analyzed using LC-QTOF/MS. Six anthocyanins were identified in the BBE, while one was detected in the LBE. Our findings demonstrate that the anthocyanin-rich LBE and BBE could be used as functional food sources in Mongolia.

PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway

  • Li, Meng;Wei, Xiuli;Li, Youzhi;Feng, Tao;Jiang, Linlin;Zhu, Hongwei;Yu, Xin;Tang, Jinxiu;Chen, Guozhong;Zhang, Jianlong;Zhang, Xingxiao
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.46.1-46.18
    • /
    • 2020
  • Background: High concentrations of particulate matter less than 2.5 ㎛ in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives: In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods: High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results: Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions: The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.

Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler velvet and immune promoting effects

  • Yoo, Jiseon;Lee, Juyeon;Zhang, Ming;Mun, Daye;Kang, Minkyoung;Yun, Bohyun;Kim, Yong-An;Kim, Sooah;Oh, Sangnam
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.166-182
    • /
    • 2022
  • Deer antler velvet is widely used in traditional medicine for its anti-aging, antioxidant, and immunity-enhancing effects. However, few studies have reported on the discovery of probiotic strains for deer antler fermentation to increase functional ingredient absorption. This study evaluated the ability of probiotic lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g., sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler velvet. Seventeen strains of Lactobacillus spp. that were isolated from kimchi and infant feces, including L. sakei, L. rhamnosus, L. brevis, and L. plantarum, and those that improved the life span of Caenorhabditis elegans were selected for evaluation. Of the 17 strains, 2 (L. rhamnosus LFR20-004 and L. sakei LFR20-007) were selected based on data showing that these strains increased both the sialic acid and GABA contents of deer antler extract after fermentation for 2 d and significantly improved the life span of C. elegans. Co-fermentation with both strains further increased the concentrations of sialic acid, GABA, and metabolites such as short-chain fatty acids and amino acids. We evaluated the biological effects of the fermented antler velvet (FAV) on the antibacterial immune response in C. elegans by assessing worm survival after pathogen infection. The survival of the C. elegans conditioned with FAV for 24h was significantly higher compared with that of the control worm group fed only normal feed (non-pathogenic E. coli OP50) exposed to E. coli O157:H7, Salmonella typhi, and Listeria monocytogenes. To evaluate the protective effects of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent was treated to in vitro and in vivo. We found that FAV significantly restored viability of mice splenocytes and immune promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor [TNF]-α) were activated compared to non-fermented deer antlers. This finding indicated the protective effect of FAV against Cy-induced cell death and immunosuppressed mice. Taken together, our study suggests that immune-promoting antler velvet can be produced through fermentation using L. rhamnosus LFR20-004 and L. sakei LFR20-007.

The Effects of Samul-tang-ga-dansam for Wound Healing (사물탕(四物湯) 가(加) 단참(丹參)의 상처 치료에 대한 효과)

  • Eun-Byeol Lee;Hyeon-Ji Kim;Chae-Young Kim;Ji-Su Choi;Chang-Hoon Woo;Young-Jun Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.2
    • /
    • pp.1-18
    • /
    • 2023
  • Objectives The purpose of this study was to evaluate the antioxidant, anti-inflammatory and wound healing effects of Samul-tang-ga-dansam water extract (SD) in wound-induced mice. Methods The mice were divided into five groups (n=7): the normal group, the control group, the positive control group, the low-dose SD group and the high-dose SD group. The normal group had no wounds and the other groups were wounded on the back with a leather punch. Distilled water was administered to the control group, 200 mg/kg of vitamin E was administered to the positive control group. In the low-dose SD group and the high-dose SD group, 1.23 g/kg and 2.47 g/kg of SD were administered, respectively. Antioxidant and anti-inflammatory protein levels were evaluated using western blot analysis. Skin tissue was analyzed by H&E, Masson's trichrome staining method. Results Oral administration of the SD significantly reduced the visible skin damage and decreased the reactive oxygen species and ONOO- activity of the serum. It significantly increased heme oxygenase-1, superoxide dismutase, catalase, GPx-1/2, Nrf2 and Keap-1 which are antioxidant-related factors in skin tissue and reduced NF-κB p65, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor α, interleukin (IL)-1β, IL-6 which are inflammation-related factors. Also, SD significantly decreased NOX2, p22phox and p47phox and increased α-smooth muscle actin and COL1A1 protein expression in fibroblasts involved in connective tissue repair. According to histological examination, the thickened epithelial layer was thinned and collagen fibers were increased to accelerate wound healing. Conclusions It is suggested that Samul-tang-ga-dansam has antioxidant and anti-inflammatory effects and promotes wound tissue repair.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway

  • Hui Tang;Hanmei Li;Dan Li;Jing Peng;Xian Zhang;Weitao Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1213-1227
    • /
    • 2023
  • Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.

Cellular Aging Inhibitory Effect of Perilla Leaf Extract on D-Galactose Induced C2C12 Myoblasts (D-갈락토스 유도 C2C12 근원세포에 대한 자소엽 추출물의 세포 노화 억제 효과)

  • Song-Mi Park;Sung-Woo Cho;Yung-Hyun Choi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.15-28
    • /
    • 2024
  • Objectives We used the D-galactose (D-gal) induced C2C12 myoblast senescence model to investigate whether ethanol extract of Perilla. fructescens leaves (EEPF) could delay cellular senescence and regulate related mechanisms. Methods C2C12 myogenic cells were cultured in an incubator under 37 ℃ and 5% CO2 conditions. EEPF, dried perilla leaves were pulverized and extracted at 1:10 (v/v) at 50 ℃ for 4 hours. Cell counting kit-8 and western blot analysis was performed. Annexin V-FITC apoptosis detection kit and DAPI staining was applied. Catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde analysis kits were used. To measure the level of reactive oxygen species generation, staining and flow cytometry was used. To analyze the mitochondrial activity, membrane potential changes were measured using JC-1. 𝛽-gal activity was analyzed using SA-𝛽-gal staining solution, and DNA damage was analyzed by using 𝛾-H2AX. Quantikine ELISA kit was used to analyze inflammatory cytokine production. Results According to the results of this study, EEPF significantly alleviated the decrease in cell viability in C2C12 cells treated with D-gal and suppressed the decrease in the expression of proliferating cell nuclear antigen. EEPF also markedly blocked D-gal-induced C2C12 cell apoptosis and restored reduced activity of CAT, GSH-Px, T-AOC, SOD. In addition, EEPF suppressed the decrease in 𝛽-galactosidase activity, the induction of DNA damage and the increase in expression of senescence-associated secretory phenotype proteins such as p16, p53 and p21 in D-gal-treated C2C12 cells. Furthermore, EEPF significantly attenuated D-gal-induced production and expression of inflammatory cytokines such as interleukin (IL)-6 and IL-18. Conclusions The results of this study indicate that EEPF can be used as a potential candidate for the prevention and treatment of muscle aging.

Danggwisu-san ameliorates acute inflammatory responses via NF-κB and MAPK pathway (당귀수산(當歸鬚散)의 in vitro 및 in vivo에서의 염증억제효과)

  • Chang Wook Lee;Sang Mi Park;Hyo Jeong Jin;Ye Lim Kim;Dae Hwa Jung;Sung Hui Byun;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.32 no.2
    • /
    • pp.155-179
    • /
    • 2024
  • Objective : Danggwisu-san (DGSS) is an herbal formula that has been mainly used in the East Asia for the treatment of bruise, sprain and external injury. The cause of this pain is that Qi and blood become tangled and do not circulate well. DGSS can improve the tangled situation and make it well-circulated. The present study evaluated the anti-inflammatory effects of DGSS on Raw 264.7 cells and in rats with paw edema. Methods : Cell viability was measured using the MTT assay. The amount of nitric oxide (NO) production was measured the amount of nitrite content in the cultured medium using Griess reagent. The amount of tumor necrosis factor-α, monocyte chemoattractant protein 1, interleukin (IL)-1βand IL-6 in the cultured supernatant were measured by ELISA kit. Proteins expression were detected by Western blot. Furthermore, the effect of DGSS on acute inflammation was observed in rat paw edema model. Results : The DGSS ameliorates the lipopolysaccharide-activated changes in NO production, iNOS expression and pro-inflammatory cytokines. Additionally, DGSS significantly suppressed expression of p-JNK, p-ERK and nuclear NF-κB. As expected, in rat paw edema study, 1.0 g/kg of DGSS significantly reduced the carrageenan-induced paw edema and iNOS expression for 1-4 h. Moreover, administration of 1.0 g/kg (4 days) of DGSS used in this study did not show any significant change on ALT and AST. Conclusion : These results demonstrate that DGSS has anti-inflammatory effects in vitro and in vivo. Therefore, this present study can put scientific evidences up for the anti-inflammatory effect of DGSS.

The Effects of Nuclear Factor-κB Decoy Oligodeoxynucleotide on Lipopolysaccharide-Induced Direct Acute Lung Injury (리포다당질로 인한 직접성 급성폐손상에서 Nuclear Factor-κB Decoy Oligodeoxynucleotide의 효과)

  • Kim, Je Hyeong;Yoon, Dae Wui;Jung, Ki Hwan;Kim, Hye Ok;Ha, Eun Sil;Lee, Kyoung Ju;Hur, Gyu Young;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.2
    • /
    • pp.95-104
    • /
    • 2009
  • Background: The pathophysiologic mechanisms of early acute lung injury (ALI) differ according to the type of primary insult. It is important to differentiate between direct and indirect pathophysiologic pathways, and this may influence the approach to treatment strategies. NF-$\kappa$B decoy oligodeoxynucleotide (ODN) is a useful tool for the blockade of the expression of NF-$\kappa$B-dependent proinflammatory mediators and has been reported to be effective in indirect ALI. The purpose of this study was to investigate the effect of NF-$\kappa$B decoy ODN in the lipopolysaccharide (LPS)-induced direct ALI model. Methods: Five-week-old specific pathogen-free male BALB/c mice were used for the experiment. In the preliminary studies, tumor necrosis factor (TNF)-$\alpha$, interleukine (IL)-6 and NF-$\kappa$B activity peaked at 6 hours after LPS administration. Myeloperoxidase (MPO) activity and ALI score were highest at 36 and 48 hours, respectively. Therefore, it was decided to measure each parameter at the time of its highest level. The study mice were randomly divided into three experimental groups: (1) control group which was administered 50 ${\mu}L$ of saline and treated with intratracheal administration of 200 ${\mu}L$ DW containing only hemagglutinating virus of Japan (HVJ) vector (n=24); (2) LPS group in which LPS-induced ALI mice were treated with intratracheal administration of 200 ${\mu}L$ DW containing only HVJ vector (n=24); (3) LPS+ODN group in which LPS-induced ALI mice were treated with intratracheal administration of 200 ${\mu}L$ DW containing 160 ${\mu}g$ of NF-$\kappa$B decoy ODN and HVJ vector (n=24). Each group was subdivided into four experimental subgroups: (1) tissue subgroup for histopathological examination for ALI at 48 hours (n=6); (2) 6-hour bronchoalveolar lavage (BAL) subgroup for measurement of TNF-$\alpha$ and IL-6 in BAL fluid (BALF) (n=6); (3) 36-hour BAL subgroup for MPO activity assays in BALF (n=6); and (4) tissue homogenate subgroup for measurement of NF-$\kappa$B activity in lung tissue homogenates at 6 hours (n=6). Results: NF-$\kappa$B decoy ODN treatment significantly decreased NF-$\kappa$B activity in lung tissues. However, it failed to improve the parameters of LPS-induced direct ALI, including the concentrations of tumor necrosis factor-$\alpha$ and interleukin-6 in BALF, myeloperoxidase activity in BALF and histopathologic changes measured by the ALI score. Conclusion: NF-$\kappa$B decoy ODN, which has been proven to be effective in indirect models, had no effect in the direct ALI model.

TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice (E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현)

  • Yoon, A-Ran;Kim, Do-Nyun;Seo, Min-Koo;Oh, Sang-Taek;Seo, Jung-Seon;Jun, Se-Mo;Cha, Jung-Ho;Lee, Seung-Deok;Lee, Suk-Kyeong
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • In this study, we established a radiodermatitis animal model and investigated the change in immune cell proportions in the secondary lymphoid organs. The cells responsible for the increased transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and interleukin-10 (IL-10) production in the lesions following irradiation were also investigated. The radiodermatitis model was constructed by locally exposing the posterior dorsal region of hairless-1 (HR-1) mice to 10 Gy electron (E)-ray/day for six consecutive days. The change in immune cell proportions was analyzed by FACS. Immunohistochemistry was carried out to detect the expression of cytokines and cell-specific markers in the skin. The proportions of antigen-presenting cells, T cells, and B cells in the lymph nodes and spleen were affected by E-irradiation. After irradiation, TGF-${\beta}1$ and IL-17 were co-localized in the papillary region of the dermis with keratin-14 (K-14)-positive cells rather than with regulatory T cells (Treg). IL-10 was not co-stained with Treg, T helper 17 (Th17) cells, dendritic cells, or macrophages. Our data indicate that TGF-${\beta}1$ is over-expressed mainly by proliferated keratinocytes in the lesions of a radiodermatitis animal model.