DOI QR코드

DOI QR Code

Analysis of antioxidant and anti-inflammatory effects of Mongolian wild lingonberry and blueberry, and identification of their bioactive compounds

몽골 야생 링곤베리와 블루베리의 항산화, 항염증 효과 및 생리활성 물질 분석 연구

  • Lee, Hye Ju (Department of Smart Green Technology Engineering, Pukyong National University) ;
  • Naranbulag, Batdorj (Department of Food Science and Nutrition, Pukyong National University) ;
  • Jeong, Seung Jin (Department of Smart Green Technology Engineering, Pukyong National University) ;
  • Seo, Chan (Department of Food Science and Nutrition, Pukyong National University) ;
  • Lee, Sang-Gil (Department of Smart Green Technology Engineering, Pukyong National University)
  • 이혜주 (부경대학교 스마트그린기술융합공학과) ;
  • ;
  • 정승진 (부경대학교 스마트그린기술융합공학과) ;
  • 서찬 (부경대학교 식품영양학과) ;
  • 이상길 (부경대학교 스마트그린기술융합공학과)
  • Received : 2022.02.11
  • Accepted : 2022.02.23
  • Published : 2022.04.30

Abstract

The Mongolian lingonberry and blueberry are two essential food sources found in Mongolia. This study investigated the antioxidant and anti-inflammatory effects of methanol extracts from Mongolian lingonberry (LBE) and blueberry (BBE). Compared to the LBE, the BBE showed higher total phenolic, flavonoid, and anthocyanin contents, as well as antioxidant capacities. The LBE and BBE inhibited the mRNA expression of pro-inflammatory genes, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase (COX-2) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. In addition, the LBE and BBE inhibited NADPH oxidase-2 (Nox2) mRNA expression, indicating that they have cellular antioxidant capacities. Anthocyanin derivatives of the LBE and BBE were analyzed using LC-QTOF/MS. Six anthocyanins were identified in the BBE, while one was detected in the LBE. Our findings demonstrate that the anthocyanin-rich LBE and BBE could be used as functional food sources in Mongolia.

본 연구에서는 몽골 야생 베리 추출물의 총 페놀성 화합물, 플라보노이드, 그리고 안토시아닌 함량과 항산화 효과를 측정하였다. 전구 염증매개 사이토카인의 유전자 발현에 미치는 영향을 살펴본 결과, LBE와 BBE의 전처리가 LPS 자극에 의해 증가된 TNF-α, IL-1β, iNOS, 및 COX-2의 mRNA 발현의 농도를 유의적으로 감소시키며 항염증 효능을 보여주었다. 또한 LBE와 BBE는 NOX2의 발현 억제를 통하여 활성산소의 생성을 저해시킴으로 세포내 염증성 산화적 스트레스를 감소시킴을 확인하였다. 몽골야생 블루베리에서는 6종의 안토시아닌이 검출되었으며, 야생 링곤베리에서는 1종의 안토시아닌이 검출되었다. 본 연구결과를 토대로 몽골의 야생 베리가 강력한 항산화 및 항염증을 통한 육식위주의 식단을 소비하는 몽골인들의 산화적 스트레스 및 만성 염증성 질환을 줄여주는 식품으로의 가능성을 확인하였다.

Keywords

Acknowledgement

본 논문은 부경대학교 자율창의학술연구비(2021)에 지원을 받아 연구되었으며 이에 감사드립니다.

References

  1. Agarwal S, Piesco N, Johns L, Riccelli A. Differential expression of IL-1β, TNF-α, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. J. Dent. Res. 74: 1057-1065 (1995) https://doi.org/10.1177/00220345950740040501
  2. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87: 245-313 (2007) https://doi.org/10.1152/physrev.00044.2005
  3. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  5. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942 (1987)
  6. Dudonne S, Dube P, Anhe FF, Pilon G, Marette A, Lemire M, Harris C, Dewailly E, Desjardins Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compost. Anal. 44: 214-224 (2015) https://doi.org/10.1016/j.jfca.2015.09.003
  7. Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. F1. 2.1-F1. 2.13 (2001)
  8. Hokkanen J, Mattila S, Jaakola L, Pirttila AM, Tolonen A. Identification of phenolic compounds from lingonberry (Vaccinium vitisidaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J. Agric. Food Chem. 57: 9437-9447 (2009) https://doi.org/10.1021/jf9022542
  9. Hutabarat R, Xiao Y, Wu H, Wang J, Li D, Huang W. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing. J. Food Qual. 2019: 1-11 (2019)
  10. Hwang JH, Ma JN, Park JH, Jung HW, Park YK. Anti-inflammatory and antioxidant effects of MOK, a polyherbal extract, on lipopolysaccharide- stimulated RAW 264.7 macrophages. Int. J. Mol. Med. 43: 26-36 (2019)
  11. Kalt W, Ryan DA, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet S. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J. Agric. Food Chem. 49: 4761-4767 (2001) https://doi.org/10.1021/jf010653e
  12. Kaur C, Kapoor HC. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 37: 153-161 (2002) https://doi.org/10.1046/j.1365-2621.2002.00552.x
  13. Kovac S, Angelova PR, Holmstrom KM, Zhang Y, Dinkova-Kostova, AT, Abramov, AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta.-General Subjects. 1850: 794-801 (2015) https://doi.org/10.1016/j.bbagen.2014.11.021
  14. Landete J. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit. Rev. Food Sci. Nutr. 53: 706-721 (2013) https://doi.org/10.1080/10408398.2011.555018
  15. Lee SG, Kim B, Yang Y, Pham TX, Park Y-K, Manatou J, Koo SI, Chun OK, Lee J-Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem. 25: 404-411 (2014) https://doi.org/10.1016/j.jnutbio.2013.12.001
  16. Liu J, Hefni ME, Witthoft CM. Characterization of flavonoid compounds in common Swedish berry species. Foods. 9: 1-13 (2020)
  17. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20: 1126-1167 (2014) https://doi.org/10.1089/ars.2012.5149
  18. Paixao N, Perestrelo R, Marques JC, Camara JS. Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chem. 105: 204-214 (2007) https://doi.org/10.1016/j.foodchem.2007.04.017
  19. Rankin JA. Biological mediators of acute inflammation. AACN Adv. Crit. Care. 15: 3-17 (2004)
  20. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ (-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 3: 71-85 (2013)
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Rice-Evans C, Halliwell B, Lunt G, Davies KJ. Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61: 1-31 (1995) https://doi.org/10.1042/bss0610001
  23. Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem. 53: 2589-2599 (2005) https://doi.org/10.1021/jf048068b
  24. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999) https://doi.org/10.1016/S0308-8146(98)00102-2