• Title/Summary/Keyword: interleaved boost converter

Search Result 109, Processing Time 0.024 seconds

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.

New PCS Applied High Boost Ratio Dual Converter and Single Phase Half Bridge Inverter (고승압 듀얼 컨버터와 단상 하프 브릿지 인버터를 적용한 새로운 PCS)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hyun, Seung-Wook;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.515-522
    • /
    • 2013
  • In this paper, a new PCS is proposed which is consisted of high boost dual converter and single phase half-bridge inverter. The proposed PCS is configured in parallel input / serial output, using two interleaved voltage doubler converter. Converter of the proposed PCS is distribute input current by configuring parallel input and reduced turn ratio of transformer by configuring serial output. Also, compositions of the inverter are composed of serial output capacitor of converter and half-bridge inverter. The dual converter and single phase half-bridge inverter is designed and characteristic of the new PCS is analysed. The system of the 1.5[kW] PCS is verified through an experimental about operation and stability.

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

Design and Control Method of ZVT Interleaved Bidirectional LDC for Mild-Hybrid Electric Vehicle

  • Lee, Soon-Ryung;Lee, Jong-Young;Jung, Won-Sang;Won, Il-Kwon;Bae, Joung-Hwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.226-239
    • /
    • 2018
  • In this paper, design and control method ZVT Interleaved Bidirectional LDC(IB-LDC) for mild-hybrid electric vehicle is proposed. The IB-LDC is composed of interleaved buck and boost converters employing an auxiliary inductor and auxiliary capacitors to achieve zero-voltage-transition. Operating principle of IB-LDC according to operation mode is introduced and mathematically analyzed in buck and boost mode. Moreover, PFM and phase control are proposed to reduce circulating current for low power range. Passive components design such as main inductor, auxiliary inductor and capacitors is suggested, considering ZVT condition and maximizing efficiency. Furthermore, a 600W prototype of ZVT IB-LDC for MHEVs is built and tested to verify validity.

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

A New Transformer Isolated Buck-Boost DC-DC Converter (새로운 절연형 Buck-Boost DC-DC 컨버터)

  • Cha, Hon-Nyong;Lee, Jong-Pil;Lee, Kyung-Jun;Kim, Tae-Jin;Yoo, Dong-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.154-155
    • /
    • 2010
  • 본 논문은 최소의 스위칭 소자를 이용한 절연형 Full-Bridge (FB) buck-boost DC-DC 컨버터를 제안한다. 기존의 dual-bridge 방식을 이용한 buck-boost 컨버터와는 달리 본 논문에서 제안한 방식은 변압기 1차측에만 스위칭 소자를 사용하고 2차측에는 다이오드 정류기를 사용한다. 필요한 buck-boost 기능을 구현하기 위하여 입력단에 2개의 인덕터를 추가하여 2 phase interleaved 방식으로 동작을 한다. 500 W 의 prototype을 제작하여 본 논문에서 제안한 방식의 타당성을 실험적으로 검증 한다.

  • PDF

High Step-up Interleaved CCM-ZVZCS Converters (고승압 인터리빙 CCM-ZVZCS 컨버터)

  • Park, Yo-Han;Choi, Se-Wan;Choi, Woo-Jin;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.114-121
    • /
    • 2011
  • This paper proposes a soft-switching interleaved boost converter which is suitable for high step-up and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation, and the diode is turned off with ZCS which results in negligible surge caused by diode reverse recovery leading to reduced switching losses. The validity of the proposed converter is proved through a 2kW prototype.

Study on Soft-Switching Transformers Inductor Boost Converter for Fuel Cell Powered Railway Vehicle

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2553-2560
    • /
    • 2018
  • In Korea, there are no instances where a hydrogen fuel cell power generation system has been used in a railway vehicle. Only the basic topology has been studied. In the previous study, conventional converters using a single switch were applied to the fuel cell power generation system. Therefore, current stress on the switch at converter on-off transitions would be large when controlling a large-capacity railway vehicle. In addition, since the input side ripple is also large, there is a problem with a shortening of the lifetime of both the fuel cell power generation system and the inductor. In this paper, a soft-switching transformer inductor boost converter for fuel cell powered railway vehicles was proposed. A technique to reduce both the switching current stress generated during on-off transitions, and the input ripple current flowing in the inductor were studied. The soft-switching TIB converter uses a transformer-type inductor to configure the entire circuit in an interleaved method, and reduces both input current ripple and the current ripple of the inductor and switch.

Nonisolated Bidirectional ZVT DC-DC Converter for an Energy Storage System (에너지 저장 시스템을 위한 비절연 양방향 ZVT DC-DC 컨버터)

  • Han, Ji-tai;Lim, Chang-soon;Kim, Rae-young;Hyun, Dong-seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.50-51
    • /
    • 2012
  • The paper presents a non-isolated bidirectional DC-DC converter for use in renewable power generation, battery, electric vehicles (EV) and small scale DC-UPS systems. In the propose design, the conventional interleaved operation of two-inductor boost structure is modified to accommodate bidirectional operation, and zero-voltage-transition (ZVT) is applied, where both the switch and the rectifier diode achieve soft condition without increasing their voltage and current stresses. The proposed converter has the merits of simple circuitry, reduced size, low cost and high efficiency. The operation principle of the converter is analyzed and verified. Also, simulation results of the proposed bidirectional dc-dc converter is shown.

  • PDF

Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery (Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증)

  • Lee, SeungJun;Cho, Younghoon;Lim, Jong-ung;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF