• Title/Summary/Keyword: interglacial period

Search Result 45, Processing Time 0.025 seconds

Sedimentary Excess Barium from a Core of the Northwest Pacific Ocean: Geochemical Proxy

  • Suk, Bong-Chool;Park, Chan-Hong;Taira, Asahiko;Hyun, Sang-Min
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.98-108
    • /
    • 2000
  • A geochemical study on a hemipelagic core sediment taken from the northwest Pacific Ocean (eastern edge of the Shikoku Basin) was conducted to use of excess barium (Ba(ex)) for evaluate the paleoceano-graphic changes. Also, the excursion of sedimentary Ba(ex) was compared with those of biogenic opal, carbonate and organic carbon content in the sediment during the last glacial and interglacial periods. The calculated Ba(ex) derived from the major and minor element shows a distinctive glacial-interglacial variations, and the mass accumulation rate (MAR) of Ba(ex) shows coincident variations with the MARs of biogenic fractions. Especially, strong positive correlation (r$^2$=0.85) between the MAR of Ba(ex) and the MAR of biogenic carbonate is recognized. Based on the strong positive correlation(r$^2$=0.85) between the MAR of Ba(ex) and the MAR of carbonate content, we estimated the degree of carbonate dissolution rate during the glacial and interglacial periods. Assuming the proportional variation and the refractory nature of barium exist between two factors, the variation of index Ca/Ba ratio in sediment indicates the degree of carbonate dissolution. Sedimentary Ca/Ba ratios index clearly show a striking fluctuation between the glacial and interglacial periods with higher positive correlation during glacial and lower correlation during interglacial. This fact indicates enhanced carbonate dissolution during interglacial period. Thus, the sedimentary Ca/Ba ratio in sedimentary records can be used as one of the useful tools for estimation of the relative degree of carbonate dissolution. The excursion of Ba(ex) and the sedimentary Ca/Ba ratio follows the typical pacific carbonate dissolution type(enhanced dissolution during interglacial and reduced dissolution during glacial time) as suggested by previous work (e.g., Wu et al., 1990). Variation in sedimentary Ca/Ba ratio thus strongly supports that glacial-interglacial fluctuation in carbonate dissolution has been prevailed in the northwest Pacific Ocean.

  • PDF

Sediment Provenance using Clay Mineral in the Continental Shelf and Rise of the Eastern Bellingshausen Sea, Antarctica (벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구)

  • Park, Young Kyu;Jung, Jaewoo;Lee, Kee-Hwan;Lee, Minkyung;Kim, Sunghan;Yoo, Kyu-Cheul;Lee, Jaeil;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.173-184
    • /
    • 2019
  • Variations in grain size distribution and clay mineral assemblage are closely related to the sedimentary facies that reflect depositional conditions during the glacial and interglacial periods. Gravity cores BS17-GC15 and BS17-GC04 were collected from the continental shelf and rise in the eastern Bellingshausen Sea during a cruise of the ANA07D Cruise Expedition by the Korea Polar Research Institute in 2017. Core sediments in BS17-GC15 consisted of subglacial diamicton, gravelly muddy sand, and bioturbated diatom-bearing mud from the bottom to the top sediments. Core sediments in BS17-GC04 comprised silty mud with turbidites, brownish structureless mud, laminated mud, and brownish silty bioturbated diatom-bearing mud from the bottom to the top sediments. The clay mineral assemblages in the two core sediments mainly consisted of smectite, chlorite, illite, and kaolinite. The clay mineral contents in core GC15 showed a variation in illite from 28.4 % to 44.5 % in down-core changes. Smectite contents varied from 31.1 % in the glacial period to 20 % in the deglacial period and 25.1 % in the interglacial period. Chlorite and kaolinite contents decreased from 40.5 % in the glacial period to 30.3 % in the interglacial period. The high contents of illite and chlorite indicated a terrigenous detritus supply from the bedrocks of the Antarctic Peninsula. Core GC04 from the continental rise showed a decrease in the average smectite content from 47.2 % in the glacial period to 20.6 % in the interglacial period, while the illite contents increased from the 21.3 % to 43.2 % from the glacial to the interglacial period. The high smectite contents in core GC04 during the glacial period may be supplied from Peter I Island, which has a known smectite-rich sediment contributed by Antarctic Circumpolar Currents. Conversely, the decrease in smectite and increase in chlorite and illite contents during the interglacial period was likely caused by a higher supply of chlorite- and illite-enriched sediment from the eastern Bellingshausen Sea shelf by the southwestward flowing contour current.

The Last Interglacial Sea Levels Estimated from the Morphostratigraphic Comparison of the Late Pleistocene Fluvial Terraces in the Eastern Coast of Korea (한국 동해안에 있어서 최종간빙기의 구정선고도 연구 후기 경신세 하성단구의 지형층서적 대비의 관점에서)

  • 최성길
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The estimation of the Last Interglacial sea level was made by using the thalassostatic terrace which had been developed in the lower reach of Namdaechon river in Kangneung, eastern coastal area of Korea. The fluvial terraces, which have been developed since late Pleistocene, were investigated. The main findings were as follows; 1) That Kangneung terrace I had been formed in the climax period of the Last Interglacial (Oxygen isotope stage 5e) was revealed. It was estimated that Kangneung terrace II had been formed during a certain warmer period between the climax period of the Last Interglacial and the early Last Glacial(probably Oxygen isotope stage 5c or 5a). 2) Being judged from the relative heights of the Kangneung terrace I and II, the sea levels of the formation periods of these terraces were estimated to have been relatively 17~20m and l0m higher than the present sea level, respectively. 3) The formation periods of the Wangsan terrace I and II were supposed to be the early and late Last Glacial respectively, being judged from the following 3 details ; a) the characteristics of the terrace deposits, b) the relation Wangsan terrace II to the buried valley floor, and c) the cross phenomena of the above two terraces to the Kangneung terraces. 4) The formation period of the pseudogleyed red soil in the Kangneung terrace I was estimated to be the middle or late period of the Last Interglacial.

  • PDF

Variations in Accumulation of Terrigenous and Biogenic Materials in the Northwest Pacific Ocean since the Last Interglacial Period

  • Hyun, Sang-Min;Taira, Asahiko;Ahagon, Naokazu;Han, Sang-Joon
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.80-89
    • /
    • 1998
  • Three cores were taken from the northwest Pacific Ocean (Shikoku Basin) to determine the accumulation rates of both biogenic and terrigeneous fractions since the last penultimate interglacial period. The sediment is characterized by large amounts of terrigenous materials with low biogenic fractions and intermittent volcanic-ash layers, suggesting a hemipelagic origin. Composition of major elements shows no significant differences among sites. Relatively small variation of TiO$_2$/Al$_2$O$_3$ ratios with respect to SiO$_2$ content is the strong evidence for the common origin of terrigenous materials. The fraction of biogenic carbonates varies from near 0% in ash layers to about 35%, with a gradual increase toward the south (St. 4 through St. 6 to St. 20). However, carbonate contents show step-wise increasing tendency from St. 4 through St. 6 to St. 20, which suggests a southward increase of carbonate production. The color reflectance indicates that the sediment of the southern sites contains relatively higher amounts of biogenic carbonates. The mass accumulation rate of terrigenous fractions during the glacial period was 2-3 times higher than that of interglacial period. This enhanced mass accumulation rate of terrigenous materials was concomitant with the high accumulation rate of biogenic fractions. The total sediment accumulation rate is considered as the most important factor controlling mass accumulation rates of the biogenic and terrigenous materials. The enhanced sediment accumulation during the glacial periods is interpreted as a consequence of climate-induced change in the supply of eolian dust from the Asian continent. Enhanced wind strength during the glacial time may have increased transportation of terrigenous materials to the ocean. Thus, variation of sediment accumulation is highly linked with climatic variations.

  • PDF

The estimation of the marine terrace of the Last Interglacial culmination stage(MIS 5e) in the Sanhari of Ulsan coast,southeastern Korea (울산 해안의 최종간빙기 최온난기 추정 해성단구)

  • Choi, Seong-Gil
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2016
  • The formation age and depositional environment of the marine terrace I of the estimated paleoshoreline altitude of 18m in Sanhari of Ulsan coast, southeastern Korea were investigated on the basis of examination of lithofacies and stratigraphy of terrace deposits. Marine deposits of the terrace is composed of rounded boulders(70cm in diameter) and rounded pebbles(1.0cm in diameter) which overlay them. The above rounded boulders which lie on the paleo-shore platform are considered to have been formed by wave abrasion in the same period that the paleo-shore platform was developed. The rounded pebbles which lie on the rounded boulder layer are considered to have been deposited in gravel beach and berm environment, judging from the laminae developed in this layer. The paleo-shore platform and marine rounded gravel layer of the terrace are assumed to have been formed in the large transgression period of the Last Interglacial culmination stage(MIS 5e), judging from the comparision of the formation age of 125ka B.P. of Juckcheon terrace I in the adjacent Pohang coast which was dated by amino acid dating. The terrestrial deposit of this terrace was largely composed of angular and subangular gravel mixed with marine rounded pebble which has been carried away mainly from the deposit of previous marine terraces and redeposited in this terrace. The lowest peat layer of terrastrial deposit was considered to have been deposited during the period from the late MIS 5e which is the estimated finishing time of deposition of the above marine gravels to the early stage of following regression period(MIS 5d) in which the sea level was still high. The sediments of angular and subangular gravel deposit which lie on this peat layer were assumed to have been deposited during the period from the early stage of the first regression period(MIS 5d) of the Last Interglacial to the Last Glacial. The lower part of the angular gravel layer is composed of the deposits of the fluvial and colluvial sediments, whereas most of the upper and middle part of the layer is mainly composed of angular gravels of colluvial sediments formed in the cold environment.

Variation Calcium Carbonate Content in Deep-Sea Pelagic Sediments of the Western Pacific Ocean (서태평양 심해 원양성 퇴적물의 탄산염 함량 변화)

  • Khim, Boo-Keun;Kim, Yeo-Hun;Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Calcium carbonate ($CaCO_3$) content was measured from 3 box core (BC060301, BC060303, BC070301) sediments, in addition to pilot core (PC313) sediments, from deep waters within the Western Pacific Ocean. At the two collection sites (BC060301, PC313) located close to the equator, downcore variation exhibited low $CaCO_3$ content during the interglacial period and high $CaCO_3$ content during the glacial period. Variation of coarse fraction (>$63\;{\mu}m$) content also followed changes in $CaCO_3$ content, indicating that dissolution effect of bottom water decreased during the glacial period. Such variation pattern is typical of the Pacific Ocean. However, downcore variation at the two collection sites (BC060303, BC070301) in the Philippine Sea contrasted the trend of the previous two cores (i.e., high $CaCO_3$ content during the interglacial period and low during the glacial period). This pattern is typical of the Atlantic Ocean. Such results may be attributed to the increasing dilution effect, initiated possibly by the increased transportation of terrigenous materials from nearby continent and archipelago during the glacial period when sea level was low. Alternatively, it is possible that the non-carbonate biogenic particles may have been responsible for dilution. Because of these uncertainties, the record of $CaCO_3$ variation in the deep Western Pacific Ocean is not regionally consistent.

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

Geomorphic Development of Marine Terraces at Jeongdongjin-Daejin area on the East Coast, Central Part of Korean Peninsula (한반도 중부 동해안 정동진, 대진지역의 해안단구 지형발달)

  • 윤순옥;황상일;반학균
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.156-172
    • /
    • 2003
  • In this paper we identify that there are High Higher surfaces(HH-surface) around Jeongdongjin and Daejin area where Higher surfaces(H-surface) of marine terrace are formed on a large scale. On the basis of an altitude of the ancient shoreline of the marine terraces, geomorphic surfaces can be classified into HH I (140m a.s.l), HH II (110m a.s.l), H I (90m a.s.l), H II (70m a.s.l), M (40m a.s.l), L I (25m a.s.l) and L II (10m a.s.l). Besides, we identify that the lowest surfaces(5~6m a.s.l) are found extensively in the research area which are assumed to be formed in the Holocene. Considering that the formation mechanism of the marine terraces in the research area is similar to that of the marine terraces at both Campo area in the south east coastal region of Korea md the thalassostatic terraces of Osip River in Samchuk in a short distance from the research area, we can assume that the HH-surfaces in both areas were formed in the same period. Based on the fact that L I- surface was formed on the Last Interglacial Stage of MIS 5, we can infer that M- was formed in MIS 7, H I- in MIS 9, H II- in MIS 11, HH I- in MIS 13 and HH II- in MIS 15. The reason for that H-surfaces, similar to those at Gampo area, to remain on a large scale is that the Holsteinian Interglacial continued for a long period of time and at that time there was a large wave-cut platform in the vicinity of the shoreline.

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF

Quaternary Sea Levels Estimated from River Terraces of the Ungcheon River, Midwestern Coast of South Korea (態川川流域의 河成段丘로부터 推定되는 舊汀線高度와 그 意義, 韓國 西海岸의 第四紀 環境變化 究明에 있어서 臨海山岳地域 小河川 河成段丘 硏究의 重要性 考察)

  • Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.613-629
    • /
    • 1996
  • River terraces of glacial and interglacial periods are most developed in the Ungcheon River, midwestern coastal region of south Korea. Among these terraces, interglacial river terraces correspond to the thalassostatic terraces of eastern coastal region of Korea. Thus the former shoreline altitudes of the coastal region around Ungcheon River can be estimated by using relative heights of these interglacial thalassostatic terraces of Ungcheon River The former shoreline altitudes estimated from interglacial thalassostatic terraces of Ungcheon River are 80m, 50${\sim}$60m, 40${\sim}$45m, 30m, 25m(?), 15${\sim}$20m, and 10m. These estimates are almost identical with those of Quaternary sea levels of eastern coastal region. Among the above estimates of Ungcheon River, the former shoreline altituded of 15~20m and 10m correspond to the ancient sea levels of $\pm$18m and $\pm$10m of eastern coastal region which were injudged as the last interglacial culmination period and late warmer period of the last interglacia(5e and 5a substages of oxygen isotope stage), respectively. Therefore there is a possibility that the rest of the above former shoreline altitudes of the coastal region aroune Jngcheon River also correspond to those of eastern coastal region. On the basis of the above possibility it can be proposed that the eastern and western coastal region of Korean Peninsula have undergone tectonic uplift of equall amount since the middle Quaternary Period.

  • PDF