• Title/Summary/Keyword: interferogram

Search Result 74, Processing Time 0.026 seconds

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF

IFSAR, Azimuth Aliasing Resolution, and Interferogram Generation Algorithms (IFSAR, 방위방향 Aliasing 제거 및 인터페로그램 생성 생성 알고리즘)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.397-402
    • /
    • 2002
  • The IFSAR technique using SAR data has various applications and is the only latest technology to produce high precision height information from the radar phase data. This paper describes the whole implementation algorithm of IFSAR technique. Also it suggests the algorithms for azimuth aliasing resolution and interferogram generation of SAR data. Those are proved through the experiment: azimuth aliasing is resolved and interferogram is generated properly. Therefore, it proposes the method for interferogram generation, an essential process in extracting high precision height data, and the development approach to principal modules of IFSAR algorithm.

Profiling of fine displacement of spherical surface using Fourier transform method (푸리에 변환 간섭 해석법을 이용한 구면의 미세 변위 측정)

  • 손영준;주신호;권진혁;최옥식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.199-203
    • /
    • 1997
  • Fine displacement of spherical suface was detected and analyzed by Twyman-Green interferometer and the interferogram analysis using Fourier transform method. The surface profile was obtained from single interferogram by introducing the carrier freguency to the interferogram. The interferogram was processed in the spatial frequency domain by fast Fourier transform, and the phase distribution was obtained by inverse Fourier transform. The 3-dimensional distribution for the surface displacement was obtained. It was compared with the calculated surface displacement and the error was less than λ/10.

  • PDF

Topographic Phase Correction of MAl (Multiple Aperture SAR Interferometry) Interferogram (MAI (Multiple Aperture SAR Interferometry) 간섭도의 지형위상보정)

  • Jung, Hyung-Sup;Lu, Zhong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.171-180
    • /
    • 2011
  • MAI (multiple aperture SAR interferometry) method has been recently developed to improve the measurement accuracy of along-track surface deformation. By means of split-beam SAR processing, this novel technique produces forward- and backward-looking interferograms, which are combined to generate an MAI interferogram. The along-track surface deformation can then be derived from the MAI interferogram. The achieved accuracy of the along-track surface deformation is approximately 8 cm for interferograms with a coherence of 0.6. It is commonly recognized that the topographic phase on an MAI interferogram can be ignored. However, in this paper, we have generated an MAI interferogram from an ALOS P ALSAR interferometric pair spanning the 2010 Haiti earthquake, and shown that the topographic phase distortion on the MAI interferogram can reach to about $3.45{\times}10^{-4}$ rad./m. This distortion corresponds to an along-track surface deformation of about 98 cm. We have proposed an efficient method to remove the topographic phase distortion. After correcting the distortion, the topographic phase distortion on the MAI interferogram is reduced to about $7.82{\times}10^{-6}$ rad./m. This means that the proposed method can effectively remove the topographic distortion on the MAI interferogram to improve along-track surface deformation measurement.

Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry (방향 판별 분산간섭계의 최적 분산 조건 연구)

  • Yun, Young Ho;Kim, Dae Hee;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Single Shot White Light Interference Microscopy for 3D Surface Profilometry Using Single Chip Color Camera

  • Srivastava, Vishal;Inam, Mohammad;Kumar, Ranjeet;Mehta, Dalip Singh
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.784-793
    • /
    • 2016
  • We present a single shot low coherence white light Hilbert phase microscopy (WL-HPM) for quantitative phase imaging of Si optoelectronic devices, i.e., Si integrated circuits (Si-ICs) and Si solar cells. White light interferograms were recorded by a color CCD camera and the interferogram is decomposed into the three colors red, green and blue. Spatial carrier frequency of the WL interferogram was increased sufficiently by means of introducing a tilt in the interferometer. Hilbert transform fringe analysis was used to reconstruct the phase map for red, green and blue colors from the single interferogram. 3D step height map of Si-ICs and Si solar cells was reconstructed at multiple wavelengths from a single interferogram. Experimental results were compared with Atomic Force Microscopy and they were found to be close to each other. The present technique is non-contact, full-field and fast for the determination of surface roughness variation and morphological features of the objects at multiple wavelengths.

SUBSIDENCE AT DUK-PO AREA REVEALED BY DINSAR AND INTERFEROGRAM STACKING

  • Hong, Sang-Hoon;Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.308-311
    • /
    • 2002
  • Radar interferometric phase is sensitive to both ground topography and coherent surface displacement. The basic tactics of differential interferometric synthetic aperture radar (DInSAR) technique are to separate the two effects. Applications of DInSAR to Duk-Po area in Busan were studied. In the study area, an abrupt subsidence, possibly caused by sub-way construction, was observed by JERS-1 SAR interferometry. Differential interferograms were generated using twenty-three JERS-1 SAR data acquired between April 24, 1992, and August 7, 1998. Because the area is relatively flat with little topographic relief the topographic effects were not removed. A phase filtering and interferogram techniques were applied to increase fringe clarity as well as to decrease decorrelation error. The stacking improves the quality of interferograms especially when the displacement is discontinuous. The interferograms clearly show the evidence of subsidence along Duk-Po subway railroad. These results demonstrate that the interferogram stacking technique can improve the detectability of radar interferometry to an abrupt displacement and DInSAR is useful to geological engineering applications.

  • PDF

Analysis of sampling noise effect of Interferometer on FTIR Spectrometer (FTIR 분광용 간섭계의 샘플링 잡음 영향 분석)

  • Bae, Hyo-Wook;Park, Do-Hyun;Ra, Sung-Woong;Choi, Seung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.10-17
    • /
    • 2007
  • FTIR(Fourier Transform Infrared) spectrometry is a useful method to obtain infrared spectra of materials in gas phase by registering the interferogram of a target material using an interferometer, and then performing a Fourier transform on the interferogram to obtain the spectrum. In this paper, sampling noise effect on signal processing of the rapid scan interferometer was studied with relation to sampling the interferogram points at the improper location and empirically verified.

Thickness Measurement of a Transparent Thin Film Using Phase Change in White-Light Phase-Shift Interferometry

  • Kim, Jaeho;Kim, Kwangrak;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.505-513
    • /
    • 2017
  • Measuring the thickness of thin films is strongly required in the display industry. In recent years, as the size of a pattern has become smaller, the substrate has become larger. Consequently, measuring the thickness of the thin film over a wide area with low spatial sampling size has become a key technique of manufacturing-yield management. Interferometry is a well-known metrology technique that offers low spatial sampling size and the ability to measure a wide area; however, there are some limitations in measuring the thickness of the thin film. This paper proposes a method to calculate the thickness of the thin film in the following two steps: first, pre-estimation of the thickness with the phase at the peak position of the interferogram at the bottom surface of the thin film, using white-light phase-shift interferometry; second, accurate correction of the measurement by fitting the interferogram with the theoretical pattern through the estimated thickness. Feasibility and accuracy of the method has been verified by comparing measured values of photoresist pattern samples, manufactured with the halftone display process, to those measured by AFM. As a result, an area of $880{\times}640$ pixels could be measured in 3 seconds, with a measurement error of less than 12%.

Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer

  • Cho, Ju Yong;Lee, Seunghoon;Kim, Hyoungjin;Jang, Won Kweon
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.244-251
    • /
    • 2022
  • We introduce a spectral reconstruction method to enhance the spectral resolution in a static modulated Fourier-transform spectrometer. The optical-path difference and the interferogram in the focal plane, as well as the relationship of the interferogram and the spectrum, are discussed. Additionally, for better spectral reconstruction, applications of phase-error correction and apodization are considered. As a result, the transfer function of the spectrometer is calculated, and then the spectrum is reconstructed based on the relationship between the transfer function and the interferogram. The spectrometer comprises a modified Sagnac interferometer. The spectral reconstruction is conducted with a source with central wave number of 6,451 cm-1 and spectral width of 337 cm-1. In a conventional Fourier-transform method the best spectral resolution is 27 cm-1, but by means of the spectral reconstruction method the spectral resolution improved to 8.7 cm-1, without changing the interferometric structure. Compared to a conventional Fourier-transform method, the spectral width in the reconstructed spectrum is narrower by 20 cm-1, and closer to the reference spectrum. The proposed method allows high performance for static modulated Fourier-transform spectrometers.