• Title/Summary/Keyword: interfacial separation

Search Result 94, Processing Time 0.022 seconds

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects (후속열처리 및 고온고습 조건에 따른 Cu 배선 확산 방지층 적용을 위한 ALD RuAlO 박막의 계면접착에너지에 관한 연구)

  • Lee, Hyeonchul;Jeong, Minsu;Bae, Byung-Hyun;Cheon, Taehun;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • The effects of post-annealing and temperature/humidity conditions on the interfacial adhesion energies of atomic layer deposited RuAlO diffusion barrier layer for Cu interconnects were systematically investigated. The initial interfacial adhesion energy measured by four-point bending test was $7.60J/m^2$. The interfacial adhesion energy decreased to $5.65J/m^2$ after 500 hrs at $85^{\circ}C$/85% T/H condition, while it increased to $24.05J/m^2$ after annealing at $200^{\circ}C$ for 500 hrs. The X-ray photoemission spectroscopy (XPS) analysis showed that delaminated interface was RuAlO/$SiO_2$ for as-bonded and T/H conditions, while it was Cu/RuAlO for post-annealing condition. XPS O1s peak separation results revealed that the effective generation of strong Al-O-Si bonds between $AlO_x$ and $SiO_2$ interface at optimum post-annealing conditions is responsible for enhanced interfacial adhesion energies between RuAlO/$SiO_2$ interface, which would lead to good electrical and mechanical reliabilities of atomic layer deposited RuAlO diffusion barrier for advanced Cu interconnects.

Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module (태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동)

  • Kim, Jeong-Hun;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.703-708
    • /
    • 2019
  • In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.

Effect of Low Temperature Annealing on the Magnetoresistance in Co/Cu Artificial Superlattice (Co/Cu인공초격자에서 저온 열처리가 자기저항에 미치는 영향)

  • 민경익;송용진;이후산;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.305-309
    • /
    • 1993
  • Thermal stability of Co/Cu artificial superlattice (AS) prepared by RF-magnetron sputtering and the effect of low temperature annealing on the magnetoresistance of the AS have been investigated in this work. Dependence of annealing behavior on the Cu spacer thickness, Fe underlayer thickness, and kind of the underlayer was examined and the relationship between the interfacial reaction and magnetoresistance was studied. It turned out that when Co/Cu AS was annealed at low temperature ($<450^{\circ}C$), the magnetoresistance could increase in the case of AS with thick spacer Cu ($20~25\AA$) layer, whereas it decreased in the case of AS with thin spacer Cu ($7\AA$) layer, which of the former is in contrast with previous reports and the latter in consistent with them. The increase of magnetoresistance is due to increase of interfacial atomic sharpness, which is supported by low angle X-ray diffraction analysis. The thermal stability of Co/Cu AS was better in the case of thick Fe underlayered AS. Interfacial reaction (separation of intermixed Co and Cu) could be observed at lower temperature for (200)-textured samples than for (111)-textured samples, which can be interpreted in terms of interdiffusion kinetics depending on the crystallographic orientation.

  • PDF

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl (홍삼농축액 함유 유화액의 유화특성에 관한연구)

  • You, Kawn-Mo;Jang, Hyeon-Ho;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.504-514
    • /
    • 2017
  • This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.

Thends in Membrane Contactors (분리막 접촉기의 기술 동향)

  • Lee Kew-Ho;Kim Min-Joung;Sea Bongkuk;Park You-In;Lee Ki-Sub
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.187-197
    • /
    • 2005
  • A membrane contactor is a device that achieves liquid/liquid or gas/liquid mass transfer without dispersion of one phase within another. This is accomplished by passing the fluids on opposite sides of a microporous membrane. This approach offers a number of important advantages over conventional dispersed phase contactors, including absence of emulsions, no flooding at high flow rates, no unloading at low flow rates, and high interfacial area. This article provides a general review of membrane contactors, including operating principles and applications.

HgTe/Cdte superlattices grown on CdZnTe(211)B by MBE

  • Kang, T.W.;Jeong, C.S.;Leem, J.H.;Ryu, Y.S.;Hyun, J.K.;Jeon, H.C.;Lee, H.Y.;Han, M.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.34-42
    • /
    • 1997
  • Hg-Te-CdTe superlattices have received much interests over the last several years as a potential material for its applications for detecting devices and optoelectronics. We have grown the HgTe-CdTe superlattice using MBE. in our lab. We have carried out DCRC spectroscopy after growth of HgTe-CdTe superlattice with varying the superlattice periods and controlling the barrier thickness and we have that the presence of the main peak and the satellite peaks. We obtained 20 arcsec of FWHM over 100 periods of superlattice. We also note that high peak intensity shows the high quality of the sample and each layer of superlattice has abrupt interfaces. The angular separation between the main peak(m=0) and the first satellite peak(m=$\pm$1) is increased when the barrier layer thickness in superlatice layers are decreased. The separation between the first setellite peak(m=$\pm$1) and the second satellite peak(m$\pm$2) is increased similarly. The number of the satellite peak is a qualitative measure of the interfacial abruptness of the superlattice.

  • PDF

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.

Laboratory Experiment of Two-layered fluid in a Rotating Cylindrical container (원통형 이층유체의 회전반 실험)

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 1993
  • A right cylindrical tank with sloping bottom and top (${\beta}-effect$) is filled with two-layered fluid and is put on the rotating table. External fluid of same density as the lower-layer fluid is continuously injected to drive the lower-layer current. By minimizing the interfacial stress between two layers the motion in the lower-layer deformed the shape of interface such that the upper-layer adjust itself to the variations of the interface in terms of its direction of flow patterns .The most significant parameter is the internal Froude Number($F_1$) and when $F_1$ is greater than 6 two-cellular circulation of the upper-layer changes its direction, there by creates a separation of Western boundary current. The separation position moves to the most northward when $F_1$ equals to 6.

  • PDF