• Title/Summary/Keyword: interfacial properties

Search Result 1,133, Processing Time 0.027 seconds

Interfacial Properties and Microfailure Mechanisms of Electrodeposited Carbon Fiber/epoxy-PEI Composites by Microdroplet and Surface Wettability Tests (Microdroplet 시험법과 Surface Wettability 측정을 이용한 전기증착된 탄소섬유 강화 Epoxy-PEI 복합재료의 계면물성과 미세파괴 메카니즘)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.153-157
    • /
    • 2001
  • Interfacial properties and microfailure modes of electrodeposition (ED) treated carbon fiber reinforced polyetherimide (PEI) toughened epoxy composite were investigated using microdroplet test and the measurement of surface wettability. As PEI content increased, Interfacial shear strength (IFSS) increased due to enhanced toughness and plastic deformation of PEI. In the untreated case, IFSS increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, for ED-treated case IFSS increased with PEI content with rather low improvement rate. The work of adhesion between fiber and matrix was not directly proportional to IFSS for both the untreated and ED-treated cases. The matrix toughness might contribute to IFSS more likely than the surface wettability. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

  • PDF

A Study on Wetting, Interfacial Reaction and Mechanical Properties between Sn-Bi-Ag System Solders and Cu Substrate (Sn-Bi-Ag계 땜납과 Cu기판과의 젖음성, 계면 반응 및 기계적 성질에 관한 연구)

  • Seo, Youn-Jong;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.245-251
    • /
    • 1997
  • Solderability, interfacial reaction and mechanical properties of joint between Sn-Bi-Ag base solder and Cu-substrate were studied. Solders were subjected to aging treatments to see the change of mechanical properties for up to 30 days at $100^{\circ}C$, and then also examined the changes of microstructure and morphology of interfacial compound. Sn-Bi-Ag base solder showed about double tensile strength comparing to Pb-Sn eutectic solder. Addition of 0.7wt%Al in the Sn-Bi-Ag alloy increase spread area on Cu substrate under R-flux and helps to reduce the growth of intermetallic compound during heat-treatment. According to the aging experiments of Cu/solder joint, interfacial intermetallic compound layer was exhibited a parabolic growth to aging time. The result of EDS, it is supposed that the soldered interfacial zone was composed of $Cu_6Sn_5$.

  • PDF

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers (나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

The Study for the Breakdown Characteristics of Interface between LSR-XLPE, EPDM-XLPE by the Interfacial Treatment Condition (LSR-XLPE, EPDM-XLPE 이종계면에서의 계면처리에 따른 절연파괴특성)

  • Cho, Han-Goo;Lee, Yu-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.460-461
    • /
    • 2007
  • In this paper, we studied the properties of a cable insulate capacity between surfaces with the variation of the interfacial breakdown. As a function of silicon oil, the variation of pressure and interfacial roughness were investigated. The insulate trouble of a power cable is out of the interfacial parts, which breakdown the insulate breakdown capacity in a power cable. In this study, the analysis of electric field and the phenomenon of interfacial breakdown were improved by increased interfacial pressure, decreased surface roughness, and oil. And It was shown that interfacial breakdown LSR-XLPE insulators is higher that of EPDM-XLPE.

  • PDF

Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends (에폭시/우레탄 블렌드의 경화거동과 기계적 계면특성에 관한 연구)

  • Seok Su-Ja;Lee Jae-Rock;Park Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.104-107
    • /
    • 2004
  • In this work, the blend of diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) was prepared and characterized in the cure behaviors and mechanical interfacial properties. The N-benzylpyrazinium hexafluoroantimonate was used as a cationic initiator for cure, and the content of PU was varied within 0-20 phr. The cure behaviors and mechanical interfacial properties were studied by DSC, near­IR, and the critical stress intensity actor $(K_{IC})$ measurements. Also thermal stabilities were carried out by TMA and TGA analyses. As a result, the cure activation energy $(E_a)$ and the conversion $(\alpha)$ were slightly increased with increasing the PU content, and a maximum value was found at 10 phr PU. The mechanical interfacial properties measured from $K_{IC}$ showed a similar behaviors with the results of conversion. These results were probably due to the increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups in PU.

  • PDF

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).

Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents

  • Alkhateb, H.;Al-Ostaz, A.;Cheng, A.H.D.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.316-324
    • /
    • 2010
  • The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young's modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.

Interfacial Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Different Embedding Angle using Electro-Micromechanical Technique (Electro-Micromechanical Technique을 이용한 각의 변화에 따른 Carbon과 SiC Fiber/Epoxy Composites의 계면감지능 및 평가)

  • Lee, Sang-Il;Kong, Jin-Woo;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Interfacial properties and electrical sensing for fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time was long to the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique can be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

  • PDF