• 제목/요약/키워드: interfacial energy

검색결과 628건 처리시간 0.021초

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • 제47권4호
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구 (A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting)

  • 하유진;김민욱;김욱배
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun;Ji Hyeon Hwang;Byung Joon Choi
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.283-290
    • /
    • 2024
  • The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.

대면적 미세 성형공정 원천기술 개발 (Development of Key Technologies for Large Area Forming of Micro Pattern)

  • 최두선;유영은;윤재성;제태진;박시환;이우일;김봉기;정은정;김진상
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.777-782
    • /
    • 2011
  • Micro features on the surface are well-known to have significant effects on optical or mechanical properties such as the optical interference, reflectance at the surface, contact angle, interfacial friction, etc. These surface micro features are increasingly employed to enhance the functionality of the applications in various application areas such as optical components for LCD or solar panel. Diverse surface features have been proposed and some of them are showing excellent efficiency or functionality, especially in optical applications. Most applications employing the micro features need manufacturing process for mass production and the injection molding and roll-to-roll forming, which are typical processes for mass production adopting polymeric materials, may be also preferred for micro patterned plastic product. Since the functionality or efficiency of the surface structures generally depends on the shape and the size of the structure itself or the array of the structures on the surface, it would be very important to replicate the features very precisely as being designed during the molding the micro pattern applications. In this paper, a series of research activities is introduced for roll-to-roll forming of micro patterned film including filling of patterns with UV curable resin, demolding of surface structures from the roll tool, control of surface energy and cure shrinkage of resin and dispose time and intensity of the UV light for curing of UV curable resin.

층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할 (Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode)

  • 강준섭;남경모;황의형;권영길;송승완
    • 전기화학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 층상구조 삼성분계 $LiNi_{1-x-y}Co_xMn_yO_2$ 양극활물질을 4.3 V 이상 고전압으로 충전시키면 용량 증가를 기대할 수 있으나 기존 전해액의 산화안정성이 낮아 고전압 성능 구현에 제한이 있다. 본 연구에서는 설폰계 전해액 첨가제인 dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS)을 사용하여 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 양극의 고전압 특성을 향상시키고자 한다. 본 논문은 다양한 선형 sulfone계 첨가제가 포함된 전해액에서 3.0-4.6 V 전압범위에서 양극의 충방전 특성과 양극-전해액간 계면거동과 표면층 분석에 대한 내용으로 이루어져 있다. 특히 Dimethyl sulfone (DMS) 첨가제 사용시, 50 사이클 중 $198-173mAhg^{-1}$의 방전 용량과 87%의 용량유지율을 보여 기존 전해액 대비 상당히 향상된 충방전 안정성을 보였다. 표면조성 분광분석 결과, DMS 첨가제 사용시 양극에 안정한 표면보호층이 형성되고 금속 용출이 억제되어 고전압 충방전 특성이 향상되었음 알 수 있었다.

전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구 (Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate)

  • 최기헌;이화성
    • 접착 및 계면
    • /
    • 제21권3호
    • /
    • pp.86-92
    • /
    • 2020
  • 본 연구에서 소스/드레인 전극이 위치하는 기판의 접촉영역과 두 전극사이 채널영역의 표면 에너지를 선택적으로 다르게 제어하여 고분자 트랜지스터의 소자성능과 전하주입 특성에 미치는 영향을 확인하였다. 채널영역의 표면에너지를 낮게 유지하면서 접촉영역의 표면에너지를 높였을 때 고분자 트랜지스터의 전하이동도는 0.063 ㎠/V·s, 접촉저항은 132.2 kΩ·cm, 그리고 문턱전압이하 스윙은 0.6 V/dec로 나타났으며, 이는 원래 소자에 비해 각각 2배와 30배 이상 개선된 결과이다. 채널길이에 따른 계면 트랩밀도를 분석한 결과, 접촉영역에서 선택적 표면처리에 의해 고분자반도체 분자의 공액중첩 방향과 전하주입 방향이 일치되면서 전하트랩 밀도가 감소한 것이 성능향상의 주요한 원인으로 확인되었다. 본 연구에서 적용한 전극과 고분자 반도체의 접촉영역에 선택적 표면처리 방법은 기존의 계면저항을 낮추는 다양한 공정과 함께 활용됨으로써 트랜지스터 성능향상을 최대화할 수 있는 가능성을 가진다.