Browse > Article
http://dx.doi.org/10.33961/jecst.2021.01165

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives  

Kim, Jaeram (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Kwak, Sehyun (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Pham, Hieu Quang (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Jo, Hyuntak (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Jeon, Do-Man (EG Corp.)
Yang, A-Reum (EG Corp.)
Song, Seung-Wan (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 269-278 More about this Journal
Abstract
Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.
Keywords
15 wt% Silicon-Graphite Anode; Li-Rich Layered Oxide Cathode; High-Voltage; Solid Electrolyte Interphase (SEI); Metal-Dissolution;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. A. Profatilova, S. S. Kim, N. S. Choi, Electrochem. Acta, 2009, 54(19), 4445-4450.   DOI
2 H. Nakai, T. Kubota, A. Kita, A. Kawashima, J. Electrochem. Soc., 2011, 158(7), A798.   DOI
3 Y.-M. Lin, K. C. Klavetter, P. R. Abel, N. C. Davy, J. L. Snider, A. Heller, C. B. Mullins, Chem. Commun., 2012, 48, 7268-7270.   DOI
4 H. Jo, J. Kim, D.-T. Nguyen, K. K. Kang, D.-M. Jeon, A.-R. Yang, S.-W. Song, J. Phys. Chem. C, 2016, 120(39), 22466-22475.   DOI
5 R. J. Gummow, A. de Kock, M. M. Thackeray, Solid State Ionics, 1994, 69(1), 59-67.   DOI
6 H. Q. Pham, G. Kim, H. M. Jung, S.-W. Song, Adv. Funct. Mater., 2018, 28(2), 1704690.   DOI
7 F. Almalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick, A. Garsuch, J. Electrochem. Soc., 2013, 160(2), A324.   DOI
8 P. K. Nayak, J. Grinblat, M. Levi, B. Markovsky, D. Aurbach, J. Electrochem. Soc., 2014, 161(10), A1534.   DOI
9 Y.-S. Park, H. J. Bang, S. M. Oh, Y. K. Sun, S.-M. Lee, J. Power Sources, 2009, 190(2), 553-557.   DOI
10 J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Chem. Commun., 2010, 46, 2025-2027.   DOI
11 Y.-S. Park, T.-W. Lee, M. S. Shin, S.-H. Lim, S.-M. Lee, J. Electrochem. Soc., 2016, 163(14), A3078.   DOI
12 E. Markervich, G. Salitra, M. D. Levi, D. Aurbach, J. Power Sources, 2005, 146(1-2), 146-150.   DOI
13 H. G. Kim, Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(4), 377-386.   DOI
14 R. Mogi, M. Inaba, S. -K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem. Soc., 2002, 149(12), A1578.   DOI
15 W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, J. Mater. Chem. A, 2014, 2(23), 8668-8675.   DOI
16 H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M. Jung, S.-W. Song, J. Electrochem. Soc., 2014, 161(14), A2002.   DOI
17 H. Q. Pham, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, Adv. Mater. Interfaces, 2017, 4(24), 1700483.   DOI
18 H. Q. Pham, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, J. Power Sources, 2016, 323, 220-230.   DOI
19 W. Wang, P. N. Kumta, J. Power Sources., 2007, 172(2), 650-658.   DOI
20 S. Dalavi, P. Guduru, B. L. Lucht, J. Electrochem. Soc., 2012, 159(5), A642.   DOI
21 R. C. de Guzman, J. Yang, M. M. C. Cheng, S. O. Salley, K. Y. Simon Ng, J. Power Sources, 2014, 246, 335-345.   DOI
22 J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao, T. Zhu, Nano Lett., 2013, 13(2), 709-715.   DOI
23 S.-W. Song, S.-W. Baek, Electrochem. Solid-State Lett., 2008, 12(2), A23.   DOI
24 C. C. Nguyen, S.-W. Song, J. Electrochem. Sci. Technol., 2013, 4(3), 108-112.   DOI
25 R. A. Quinlan, Y. -C. Lu, Y. Saho-Horn, A. N. Mansour, J. Electrochem. Soc., 2013, 160(4), A669.   DOI
26 J. Xiao, W. Xu, D. Wang, D. Choi, W. Wang, X. Li, G. L. Graff, J. Liu, J.-G. Zhang, J. Electrochem. Soc., 2010, 157(10), A1047.   DOI
27 R. McMillan, H. Slegr, Z. X. Shu, W. Wang, J. Power Sources, 1999, 81-82, 20-26.   DOI
28 D.-T. Nguyen, J. Kang, K.-M. Nam, Y. Paik, S.-W. Song, J. Power Sources, 2016, 303, 150-158.   DOI
29 D. Y. W. Yu, K. Yanagida, J. Electrochem. Soc. 2011, 158(9), A1015.   DOI
30 H. Q. Pham, B. J. Kim, H. Jo, S. Kang, S.-J. You, S.-W. Song, J. Electrochem. Soc., 2017, 164(13), A3045.   DOI
31 J. Yang, A. Kraysberg, Y. Ein-Eli, J. Power. Sources, 2015, 282, 294-298.   DOI
32 Y.-M. Lee, K. M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim, S.-W. Song, J. Phys. Chem. C., 2014, 118(20), 10631-10639.   DOI
33 N. Tran, L. Croguennec, C. Labrugere, C. Jordy, P. Biensan, C. Delmas, J. Electrochem. Soc., 2006, 153(2), A261.   DOI
34 Y. Nakamura, T. Yoshino, M. Satish-Kumar, American Mineralogist, 2017, 102(1), 135-148.   DOI
35 J. R. Szczech, S. Jin, Energy Environ. Sci., 2011, 4, 56-72.   DOI
36 L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, Nano Energy, 2013, 2(3), 361-367.   DOI
37 D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc., 1996, 143(7), 2204.   DOI
38 M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett., 2004, 7(5), A93.   DOI
39 J.-W. Song, C. C. Nguyen, H. Choi, K.-H. Lee, K.-H. Han, Y.-J. Kim, S. Choy, S.-W. Song, J. Electrochem. Soc., 2011, 158(5), A458.   DOI