• Title/Summary/Keyword: interfacial analysis

Search Result 634, Processing Time 0.025 seconds

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media

  • Alizadeh, Abdolhamid;Khodaei, Mohammad M.;Beygzadeh, Mojtaba;Kordestani, Davood;Feyzi, Mostafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2546-2552
    • /
    • 2012
  • A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.

The fractal analysis of the fracture surface of concretes made from different coarse aggregates

  • Prokopski, Grzegorz;Konkol, Janusz
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.239-248
    • /
    • 2005
  • The article presents the results of examination of the fractal dimension D of concrete specimen fracture surfaces obtained in fracture toughness tests. The concretes were made from three different types of coarse aggregate: gravel, dolomite and basalt aggregate. Ordinary concretes (C40) and high-performance concretes (HPC) were subjected to testing after 7, 14, 28 and 90 days of curing, respectively. In fracture toughness and compressive tests, different behaviours of concretes were found, depending on the type of aggregate and class of concrete (C40, HPC). A significant increase in the strength parameters tested occurred also after a period of 28 days (up to the $90^{th}$ day of curing) and was particularly large for concretes C40. Fractal examinations performed on fracture replicas showed that the fractal dimension D was diverse, depending on the coarse aggregate type and concrete class being, however, statistically constant after 7 and 14 days for respective concretes during curing. The fractal dimension D was the greater, the worse strength properties were possessed by the concrete. A cross-grain crack propagation occurred in that case, due to weak cohesion forces at the coarse aggregate/mortar interface. A similar effect was observed for C40 and HPC made from the same aggregate. A greater dimension D was exhibited by concretes C40, in which case the fracture was easier to form compared with high-performance concretes, where, as a result of high aggregate/mortar cohesion forces, the crack propagation was of inter-granular type, and the resulted fracture was flatter.

Effect of Surface-Modified Carbon Fiber on the Mechanical Properties of Carbon/Epoxy Composite for Bipolar Plate of PEMFC (표면처리 탄소섬유가 PEMFC용 탄소/에폭시 복합재료 분리판의 기계적 강도에 미치는 영향)

  • LEE, HONGKI;HAN, KYEONGSIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • Epoxy/carbon composite was used to prepare a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Phenol novolac-type epoxy and diglycidyl ether of bisphenol A (DGEBA)-type epoxy mixture was used as a matrix and graphite powder, carbon fiber (CF) and graphite fiber (GF) were used as carbon materials. In order to improve the mechanical properties of the bipolar plate, surface-modified CF was incorporated into the epoxy/carbon composite. To determine the cure temperature of the epoxy mixture, differential scanning calorimetry (DSC) analysis was performed and the data were introduced to Kissinger equation in order to get reaction activation energy and pre-exponential factor. Tensile and flexural strength was obtained by using universal testing machine (UTM). The surface morphology of the fractured specimen and the interfacial morphology between epoxy matrix and CF or GF were observed by a scanning electron microscopy (SEM).

Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet (섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석)

  • 장수학;김석호;백남주;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 1991
  • During Compression molding of polymeric composite materials, the flow characteristics should be obtained. Understanding the flow states may be useful for determination of optimum molding conditions, charge pattern etc. So far, for obtaining the flow analysis, no-slip boundary condition was applied on the mold surface. However, The study under consideration of the slip was conducted by Barone and Caulk. They have introduced the nondimensional parameter which is the ratio of viscous to friction resistance and governs the frictional condition. But the method for determining the parameter could not be proposed. In our work, the parameter which explains the interfacial friction is measured under a variety of molding conditions. Two-dimensional rectangular part and circular hollow disk are simulated with the measured parameter using the finite element method. Effects of the parameter on shapes of flow fronts are also presented.

Interfacial Electric Property of PVA/PVAc Particles (PVA/PVAc 입자의 계면 전기적 성질)

  • Lee, Ha-Na;Lee, Jae-Woong;Kim, Ji-Young;Lee, Won-Chul;Kim, Sam-Soo
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.8-17
    • /
    • 2008
  • Poly (vinyl acetate) (PVAc) was used as a precursor of PVA/PVAc (skin/core) bicomponent. In order to investigate the possibility of PVA particles for electrical applications, PVA/PVAc particles were produced with an emulsifier, SDS (Sodium Dodecyl Sulfate) and an initiator, V-50 (2,2'-azobis(2-amidinopropane)digydrochloride). In this study, we investigated the electrical property of PVA/PVAc (skin/core) particles. The hydroxyl group of the PVA/PVAc (skin./core) was confirmed by the analysis of PVAc and PVA/PVAc (skin/core) using Fourier Transform Infrared Spectroscopy (FT-IR). The zeta-potential of the PVA/PVAc (skin/core) and PVAc has similarity; however, charge control agent (CCA) treated PVA/PVAc (skin/core) particles has lower zeta-potential than untreated PVA/PVAc particles. The zeta-potential (negative values) of the PVA/PVAc (skin/core) were enhanced in proportion to the increased concentration of CCA.

In-situ Analysis on the Effect of Mo Underlayer on Hillock Formation Behavior in Al Thin Films (Al 박막의 힐록 형성에 미치는 Mo 하부층의 영향에 관한 실시간 분석)

  • Lee, Yong-Duck;Hwang, Soo-Jung;Lee, Je-Hun;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The in-situ scanning electron microscopy observation of real-time hillock evolution in pure hi thin films on glass substrate during Isothermal annealing was analyzed quantitatively to understand the compressive stress relaxation mechanism by focusing on the effect of Mo interlayer between Al film and glass substrate. There is a good correlation between the hillock-induced stress relaxation by in-situ scanning electron microscopy observation ana the measured stress relaxation by wafer curvature method. It is also clearly shown that the existence of Mo interlayer plays an important role in hillock formation probably due to the large difference in interfacial diffusivity of Al films.

Analyses of Stress Intensity Factors and Evaluation of Fracture Toughness in Adhesively Bonded DCB Joints (DCB 접착이음에 대한 응력세기계수의 해석 및 파괴인성의 평가)

  • Jeong, Nam-Yong;Lee, Myeong-Dae;Gang, Sam-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1547-1556
    • /
    • 2000
  • In this paper, an evaluation method of fracture toughness to apply interfacial fracture mechanics was investigated in adhesively bonded double-cantilever beam (DCB) joints. Four types of adhesively bonded DCB joints with an interface crack were prepared for analyses of the stress intensity factors using boundary element method(BEM) and the fracture toughness test. From the results of BEM analysis and fracture toughness experiments, it is found that the stress intensity factor, K1 is a parameter driving the fracture of adhesively bonded joints. Also, the evaluation method of fracture toughness by separated stress intensity factors of mixed mode cracks was proposed and the influences of mode components for its fracture toughness are investigated in adhesively bonded DCB joints.

Study on analysis of coating layer by FE-SEM image (FE-SEM을 이용한 도공층 공극 구조 분석 연구)

  • Kim, Jin-U;Lee, Hak-Rae;Yun, Hye-Jeong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.67-67
    • /
    • 2010
  • 이미지를 이용한 도공층 구조 분석은 도공층의 실제 Morphology를 분석하여 평가하는 방법으로서 최근 세밀한 도공층 구조 분석을 위해 이 방법에 대한 많은 연구가 진행되고 있다. 특히 이러한 방법은 수은압입법(Mercury intrusion)이나 질소흡착법 (Nitrogen adsorption by BJH theory) 등과 같은 기존의 공극 특성 평가 방법과 달리 pore aspect ratio 및 orientation 등과 같은 공극 dimension을 평가할 수 있는 장점이 있다. 이러한 공극 dimension은 size distribution 및 porosity와 더불어 인쇄, 라미네이션 접착 등과 같은 Liquid interfacial 및 침투 측면에서 중요한 요소이기 때문에 이를 평가하기 위한 적합한 방법으로 인식되고 있다. 또, 원지 부분과 도공층 간의 경계를 명확하게 보여주고 Surface와 Cross-section 영역을 구분하여 평가 할 수 있어 더 명확한 평가를 가능하게 한다. 본 연구에서는 이미지 분석을 통해 도공액 구성 조건에 따른 도공층의 공극 구조 특성을 평가 하였고 일부 요소에 대해서는 수은 압입법과 비교 평가하여 이미지 분석법과의 상관성에 대해 고찰 하였다. 본 연구에서 사용된 FE (Field Emission)-SEM은 일반 SEM과 달리 전압에 의한 높은 전기장의 형성을 통해 저 가속 전압으로 이미지를 구현하는 장비로서 본 연구에서는 FE-SEM을 통해 도공층의 세밀한 Morphology와 공극 구조 이미지를 구현할 수 있었다.

  • PDF

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

The Flame Retardant and Mechanical Properties of Wood Flour-High Density Polyethylene Composites (목분-HDPE 복합체의 난연성 및 기계적 성질)

  • Shin, Baeg-Woo;Bang, Dae-Suk;Song, Young-Ho;Chung, Kook-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.26-31
    • /
    • 2012
  • Wood-plastic composites represents a growing class of materials used by the residential construction industry and furniture industry. In this study, the effect of flame retardants on the flammability and mechanical properties of wood flour-high density polyethylene(HDPE) composites were studied. we were manufactured wood flour-HDPE composites by modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The flame retardant properties were used limiting oxygen index(LOI) and mechanical properties were measured by universal testing machine(UTM). The Morphological analysis of composites were analyzed by Scanning electron microscope(SEM). It was found that Ammonium polyphosphate can effectively reduce the flammability of the wood flour-HDPE composites. Marginal reduction in the mechanical properties of the composites was found with addition of flame retardants. SEM images showed that the coupling agent improved wood flour-HDPE interfacial bonding.