Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.49

Effect of Surface-Modified Carbon Fiber on the Mechanical Properties of Carbon/Epoxy Composite for Bipolar Plate of PEMFC  

LEE, HONGKI (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University)
HAN, KYEONGSIK (Department of Life Science, Woosuk University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 49-56 More about this Journal
Abstract
Epoxy/carbon composite was used to prepare a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Phenol novolac-type epoxy and diglycidyl ether of bisphenol A (DGEBA)-type epoxy mixture was used as a matrix and graphite powder, carbon fiber (CF) and graphite fiber (GF) were used as carbon materials. In order to improve the mechanical properties of the bipolar plate, surface-modified CF was incorporated into the epoxy/carbon composite. To determine the cure temperature of the epoxy mixture, differential scanning calorimetry (DSC) analysis was performed and the data were introduced to Kissinger equation in order to get reaction activation energy and pre-exponential factor. Tensile and flexural strength was obtained by using universal testing machine (UTM). The surface morphology of the fractured specimen and the interfacial morphology between epoxy matrix and CF or GF were observed by a scanning electron microscopy (SEM).
Keywords
Bipolar plate; PEMFC; Graphite fiber; Carbon fiber; Epoxy resin; Mechanical property; Electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. J. Lee, S. Mukherjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochim. Acta, Vol. 43, No. 24, 1998, pp. 3693-3701, doi: https://doi.org/10.1016/S0013-4686(98)00127-3.   DOI
2 W. K. Choi, B. J. Kim, B. G. Min, K. M. Bae, and S. J. Park, "Effects of sizing treatment of carbon fibers on mechanical interfacial properties of nylon 6 matrix composites", Elastomers and Composites, Vol. 45, No. 1, 2010, pp. 2-6. Retrieved from http://kiss.kstudy.com/thesis/thesis-view.asp?key=2843557.
3 R. B. Prime, "Thermal characterization of polymeric materials", Academic Press, USA, 1982, pp. 435.
4 J. N. Kirk, M. Munro, and P. W. R. Beaumont, "The fracture energy of hybrid carbon and glass fibre composites", J. Mater. Sci., Vol. 13, No. 10, 1978, pp. 2197-2204, doi: https://doi.org/10.1007/BF00541674.   DOI
5 P. W. R. Beaumont and P. D. Anstice, "A failure analysis of the micromechanisms of fracture of carbon fibre and glass fibre composites in monotonic loading", J. Mater. Sci., Vol. 15, No. 10, 1980, pp. 2619-2635, doi: https://doi.org/10.1007/BF00550768.   DOI
6 J. Y. Lee, W. K. Lee, H. R. Rim, G. B. Joung, and H. K. Lee, "Effect of carbon fiber filament and graphite fiber on the mechanical properties and electrical conductivity of elastic carbon composite bipolar plate for PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 2, 2014, pp. 131-138, doi: https://doi.org/10.7316/KHNES.2014.25.2.131.   DOI
7 H. E. Lee, Y. S. Chung, and S. S. Kim, "Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates", Composite Structures, Vol. 180, 2017, pp. 378-385, doi: https://doi.org/10.1016/j.compstruct.2017.08.037.   DOI
8 F. A. de Bruijn, V. A. T. Dam, and G. J. M. Janssen, "Review: durability and degradation issues of PEM fuel cell components", Fuel Cells, Vol. 8, No. 1, 2008, pp. 3, doi: https://doi.org/10.1002/fuce.200700053.   DOI
9 A. Garsuch, D. A. Stevens, R. J. Sanderson, S. Wang, R. T. Atanasoski, S. Hendricks, M. K. Debe, and J. R. Dahna, "Alternative catalyst supports deposited on nanostructured thin films for proton exchange membrane fuel cells", J. Electrochem. Soc., Vol. 157, No. 2, 2010, pp. B187, doi: https://doi.org/10.1149/1.3261855.   DOI
10 S. R. Dhakate, R. B. Mathur, B. K. Kakati, and T. L. Dhami, "Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell", Int. J. Hydrogen Energy, Vol. 32, No. 17, 2007, pp. 4537-4543, doi: https://doi.org/10.1016/j.ijhydene.2007.02.017.   DOI
11 S. Liu, T. J. Pan, R. F. Wang, Y. Yue, and J. Shen, "Anti-corrosion and conductivity of the electrodeposited graphene/polypyrrole composite coating for metallic bipolar plates", Progress in Organic Coatings, Vol. 136, 2019, pp. 105237, doi: https://doi.org/10.1016/j.porgcoat.2019.105237.   DOI
12 A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo, "Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells", Composites Part B: Engineering, Vol. 155, 2018, pp. 272-281, doi: https://doi.org/10.1016/j.compositesb.2018.08.016.   DOI
13 R. Arukula, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: an efficient anode catalyst for direct methanol fuel cells", J. Alloys. Compd., Vol. 771, 2019, pp. 477-488, doi: https://doi.org/10.1016/j.jallcom.2018.08.303.   DOI
14 K. Y. Ahn, C. N. Yang, and S. Lee, "A study on electrochemical characteristics of MEA with nafion ionomer content in catalyst layer for PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 6, 2010, pp. 540-546.
15 C. He, S. Desai, G. Brown, and S. Bollepalli, "PEM fuel cell catalysts: cost, performance, and durability", Electrochem. Soc. Interface, Vol. 14, No. 3, 2005, pp. 41-44. Retrieved from https://www.electrochem.org/dl/interface/fal/fal05/IF8-05_Pg41-44.pdf.
16 K. W. Park, and K. S. Seol, "Nb-$TiO_2$ supported Pt cathode catalyst for polymer electrolyte membrane fuel cells", Electrochem. Commun., Vol. 9, No. 9, 2007, pp. 2256-2260, doi: https://doi.org/10.1016/j.elecom.2007.06.027.   DOI
17 S. R. Dhakatea, S. Sharma, and R. B. Mathura, "A low-density graphite-polymer composite as a bipolar plate for proton exchange membrane fuel cells", Carbon Letters, Vol. 14, No. 1, 2013, pp. 40-44, doi: http://dx.doi.org/10.5714/CL.2012.14.1.040.   DOI
18 H. Tsuchiya and O. Kobayashi, "Mass production cost of PEM fuel cell by learning curve", Int. J. Hydrogen Energy, Vol. 29, No. 10, 2004, pp. 985-990, doi: https://doi.org/10.1016/j.ijhydene.2003.10.011.   DOI
19 B. K. Kakati and D. Deka, "Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell", Electrochim. Acta, Vol. 52, No. 25, 2007, pp. 7330-7336, doi: https://doi.org/10.1016/j.electacta.2007.06.021.   DOI
20 S. Srinivasan, "Fuel cells for extraterrestrial and terrestrial applications", J. Electrochem. Soc., Vol. 136, No. 2, 1989, pp. 41C, doi: https://doi.org/10.1149/1.2096647.   DOI