• Title/Summary/Keyword: interface toughness

Search Result 135, Processing Time 0.04 seconds

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.244-244
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

Effects of water-cement ratio on fiber-matrix interface characteristics and matrix fracture toughness (섬유-모르타르 경계면과 모르타르의 역학적 특성에 미치는 물-시멘트비의 영향)

  • Kim, Yun-Yong;Kim, Jeong-Su;Kim, Hee-Sin;Kim, Jin-Keun;Ha, Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.336-339
    • /
    • 2004
  • This paper presents an experimental investigation examining water-cement ratio effects on fiber-matrix interface properties and on matrix fracture properties, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix, respectively. Test results showed that the properties tended to increase with decreasing water-cement ratio. Composite design using these test results will be discussed in the follow-up paper.

  • PDF

Bond Performance of Recycled PET Bottle Fiber Reinforced Concrete (폐 PET병을 이용한 콘크리트 보강 섬유의 부착특성)

  • Won, Jong-Pil;Park, Chan-Gi;Lee, Su-Jin;Kim, Jung-Hoon;Kim, Hwang-Hee;Lee, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.373-376
    • /
    • 2006
  • The purpose of this study was manufactured and evaluated the bond performance of recycled polyethylene terephthalate(PET) bottle fiber reinforced concrete. Four deformed recycled PET bottle fibers were manufactured and pullout test was conducted in accordance with the JCI-SF 8. Test parameters included four different type of fiber geometry and two types of mortar specimens. According to bond test results, it was found that embossing type recycled PET bottle fiber was significant improving the pullout load and interface toughness.

  • PDF

Determination of Interfacial Fracture Toughness by Bimaterial Eccentric Compression Test (이질재 편심압축실험에 의한 계면 파괴 인성치 산정)

  • 김형균;홍창우;양성철;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.78-81
    • /
    • 2000
  • The test specimen proposed in this study, named the bimaterial eccentric compression specimen, is a rectangular prism of two dissimilar materials with a notch at their interface. Normalized energy release rates and phase angles were calibrated with the finite element method. The normalized energy release rate increases with notch ratio but decreases with E2/E2, loading point, and phase angle, Bimaterial specimens consisting of mortar and ploymer as well as mortar and rock were prepared and tested to simulate fracture behavior ar the interface. Test results have confirmed that initial notch has significant effect on the apparent interfacial toughness.

  • PDF

Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method (다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석)

  • Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.

Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes (Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성)

  • Kim, Sung Wan;Chung, Won Sub;Sohn, Kee-Sun;Son, Chang-Young;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

INFLUENCE OF INVESTMENT/CERAMIC INTERACTION LAYER ON INTERFACIAL TOUGHNESS OF BODY CERAMIC BONDED TO LITHIA-BASED CERAMIC

  • Park, Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.683-689
    • /
    • 2006
  • Statement of problem. Interfacial toughness is important in the mechanical property of layered dental ceramics such as core-veneered all-ceramic dental materials. The interfaces between adjacent layers must be strongly bonded to prevent delamination, however the weak interface makes delamination by the growth of lateral cracks along the interface. Purpose. The purpose of this study was to determine the effect of the reaction layer on the interfacial fracture toughness of the core/veneer structure according to the five different divesting. Materials and methods. Thirty five heat-pressed Lithia-based ceramic core bars (IPS Empress 2), $20mm{\times}3mm{\times}2mm$ were made following the five different surface divesting conditions. G1 was no dissolution or sandblasting of the interaction layer. G2 and G3 were dissolved layer with 0.2% HF in an ultrasonic unit for 15min and 30 min. G4 and G5 were dissolved layer for 15min and 30min and then same sandblasting for 60s each. We veneered bilayered ceramic bars, $20mm{\times}2.8mm{\times}3.8mm$(2mm core and 1.8mm veneer), according to the manufacturer's instruction. After polishing the specimens through $1{\mu}m$ alumina, we induced five cracks for each of five groups within the veneer close to interface under an applied indenter load of 19.6N with a Vickers microhardness indenter. Results. The results from Vickers hardness were the percentage of delamination G1:55%, G2:50%, G3:35%, G4:0% and G5:0%. SEM examination showed that the mean thickness of the reaction layer were G1 $93.5{\pm}20.6{\mu}m$, G2 $69.9{\pm}14.3{\mu}m$, G3 $59.2{\pm}20.2{\mu}m$, G4 $0.61{\pm}1.44{\mu}m$ G5 $0{\pm}0{\mu}m$. The mean interfacial delamination crack lengths were G1 $131{\pm}54.5{\mu}m$, G2 $85.2{\pm}51.3{\mu}m$, and G3 $94.9{\pm}81.8{\mu}m$. One-way ANOVA showed that there was no statistically significant difference in interfacial crack length among G1, G2 and G3(p> 0.05). Conclusion. The investment reaction layer played important role at the interfacial toughness of body ceramic bonded to Lithia-based ceramic.

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.