• Title/Summary/Keyword: interface properties

Search Result 2,407, Processing Time 0.023 seconds

Mechanical Properties of Unidirectional Carbon-carbon Composites as a Function of Fiber Volume Content

  • Dhakate, S.R.;Mathur, R.B.;Dham, T.L.
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Unidirectional polymer composites were prepared using high-strength carbon fibers as reinforcement and phenolic resin as matrix precursor with keeping fiber volume fraction at 30, 40, 50 and 60% respectively. These composites were carbonized at $1000^{\circ}C$ and graphitised at $2600^{\circ}C$ in the inert atmosphere. The carbonized and graphitised composites were characterized for mechanical properties as well as microstructure. Microscopic studies were carried out of the polished surface of carbonized and graphitised composites after etching by chromic acid, to understand the effect of fiber volume fraction on oxidation at fiber-matrix interface. It is found that the flexural strength in polymer composites increases with fiber volume fraction and so does for the carbonised composites. However, the trend was found to be reversed in graphitised composites. In all the carbonized composites anisotropic region has been observed at fiber-matrix interface which transforms into columnar type microstructure upon graphitisation. The extension of strong and weak columnar type microstructure is function of fiber volume fraction. SEM microscopy of the etched surface of the sample reveal that composites containing 40% fiber volume has minimum oxidation at the interface, revealing a strong interfacial bonding.

  • PDF

A study on the heat dissipation characteristic of thermal interface materials with Graphene, Cu and Ag nano powders (Graphene, Cu와 Ag 나노 파우더를 이용한 열전도재의 방열 특성에 관한 연구)

  • Park, Sang-Hyeok;Im, Sung-Hoon;Kim, Hyun-Ji;Noh, Jung-Pil;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.767-773
    • /
    • 2019
  • The thermal diffusion performance of the electronic device is a factor for evaluating the stability of the electronic device. Therefore, many of research have been conducted to improve the thermal characteristics of thermal interface materials, which are materials for thermal diffusion of electronic products. In this study, nano thermal grease was prepared by blending graphene, silver and copper nano powders into a thermal grease, a type of thermal interface materials, and the heat transfer rate was measured and compared for the purpose of investigating the improved thermal properties. As a result, the thermal properties were good in the order of graphene, silver and copper, which is thought to be due to the different thermal properties of the nano powder itself.

Anormal Dielectric and Insulation Properties of Semiconductor/XLPE (반도전층/XLPE 의 불규칙한 유전 및 절연 특성)

  • Lee, Jong-Chan;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.53-57
    • /
    • 2002
  • Reduction of insulation thickness would be beneficial not only for increasing the cable length but would also improve its thermal performance. An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. In this paper, to evaluate superficially the interface properties between XLPE insulation and semiconducting layer, the dielectric and insulation properties of tan${\delta}$ and volume resistance were measured with temperature dependence. Above the results, dielectirc and insulation properties with semiconductor/XLPE were more anormal than its bulk caused by the interfacial properties.

  • PDF

Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230 (고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향)

  • Kang, Gil-Mo;Jeon, Ae-Jeong;Kim, Hong-Kyu;Hong, Sung-Suk;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

A Study on Partial Discharge Propeties of Interface Layer in-Mica-Epoxy Composite Material (마이카-에폭시 복합절연계 계면층의 부분방전 특성에 관한 연구)

  • 이은학;김태성;박종건;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.83-89
    • /
    • 1991
  • The partial discharge properties of interface layer in Mica-Epoxy composite, which has been mainly used for the coil insulating material of high voltage machinery, are different from those of resins due to the abnormal interface layer to be presented between inorganic material and resin. Accordingly, the study on discharge of interface in composite insulting system is strongly requsted for not only an increasing of insulating strength, but also the basical information of diagnosis system for high voltage equipment. As a result, it has been confirmed that the interface is an abnormal resin layer and the contact states at interface is depended upon the density of silane aqueous solution. Pulse frequency at abnormal interface shows a linear increasing with enlargement of discharge quantity. Whereas, in case of normal interface, pulse frequency property represents exponential increasing at the point of saturating. A life model can be diagramed from results of time dependance of skewness, and a survival life time can be quantified from the life model suggested.

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

Effect of Interface on the Properties of Cord-Rubber Composites (코드섬유-고무 복합재료의 물성치에 대한 계면의 영향)

  • Lim, Hyun-Woo;Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 (겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

Effect of Casting Speed on Microstructure and Mechanical Properties of Al-Mg-Si/Al Hybrid Material by Duo-Casting

  • Park, Sung Jin;Suh, Jun-Young;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.111-116
    • /
    • 2020
  • Two different casting speeds of 60 and 80mm/min are adopted to determine the effect of casting speed on the microstructure and mechanical properties of Al-Mg-Si/Al hybrid material prepared by duo-casting. The obtained hybrid material has a uniform and straight macro-interface between the pure Al side and the Al-Mg-Si alloy side at both casting speeds. When the casting speed is increased to 80mm/min, the size of primary α phases in Al-Mg-Si alloy decreases, without change of shape. Although the Al-Mg-Si alloy produced at higher casting speed of 80mm/min shows much higher ultimate tensile strength (UTS) and 0.2 % proof stress and lower elongation, along with higher bending strength compared to the case of the 60mm/min in casting speed, the tensile properties and bending strength of the hybrid material, which are similar to those of pure Al, are the same regardless of the increase of casting speed. Despite the different casting speeds, deformation and fracturing in hybrid materials are observed only on the pure Al side. This indicates that the macro-interface is well-bonded, allowing it to endure tensile and bending deformation in all hybrid materials.