Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.3.111

Effect of Casting Speed on Microstructure and Mechanical Properties of Al-Mg-Si/Al Hybrid Material by Duo-Casting  

Park, Sung Jin (Dept. of Materials Science and Engineering, Tokyo Institute of Technology)
Suh, Jun-Young (Dept. of Materials Engineering, Korea Aerospace University)
Lee, Hee-Kwon (Dept. of Metallurgy and Materials Engineering, Changwon National University)
Chang, Si Young (Dept. of Materials Engineering, Korea Aerospace University)
Publication Information
Korean Journal of Materials Research / v.30, no.3, 2020 , pp. 111-116 More about this Journal
Abstract
Two different casting speeds of 60 and 80mm/min are adopted to determine the effect of casting speed on the microstructure and mechanical properties of Al-Mg-Si/Al hybrid material prepared by duo-casting. The obtained hybrid material has a uniform and straight macro-interface between the pure Al side and the Al-Mg-Si alloy side at both casting speeds. When the casting speed is increased to 80mm/min, the size of primary α phases in Al-Mg-Si alloy decreases, without change of shape. Although the Al-Mg-Si alloy produced at higher casting speed of 80mm/min shows much higher ultimate tensile strength (UTS) and 0.2 % proof stress and lower elongation, along with higher bending strength compared to the case of the 60mm/min in casting speed, the tensile properties and bending strength of the hybrid material, which are similar to those of pure Al, are the same regardless of the increase of casting speed. Despite the different casting speeds, deformation and fracturing in hybrid materials are observed only on the pure Al side. This indicates that the macro-interface is well-bonded, allowing it to endure tensile and bending deformation in all hybrid materials.
Keywords
duo-casting; Al-Mg-Si hybrid material; macro-interface; casting speed; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 S. Y. Chang, S. J. Cho, S. K. Hong and D. H. Shin, J. Alloys Compd., 316, 275 (2001).   DOI
2 S. Y. Chang, Y. K. Kim, S. K. Hong and D. H. Shin, Mater. Trans., 42, 1035 (2001).   DOI
3 S. Y. Chang, H. G. Cho and Y. D. Kim, J. Korean Powder Metall. Inst., 14, 1 (2007).   DOI
4 S. H. Lee and G. J. Lee, Korean J. Mater. Res., 21, 655 (2011) (in Korean).   DOI
5 H. D. Manesh and A. K. Taheri, Mech. Mater., 37, 531 (2005).   DOI
6 O. Yilmaz and H. Celik, J. Mater. Process. Technol., 141, 67 (2003).   DOI
7 P. Kazanowski, M. E. Epler and W. Z. Misiolek, Mater. Sci. Eng., 369, 170 (2004).   DOI
8 F. Dingfa, N. Honglong and C. Zenhua, Ordnance Mater. Sci. Eng., 24, 65 (2001).
9 S. Jianbo, L. Jun, Y. Zhiming, C. Zhiquiang and L. Tingju, in Proceedings of the 6th International Conference on Electromagnetic Processing of Materials, p595 Dresden, Germany, October (2009).
10 J. M. Han, C. H. Kim, J. P. Park and S.Y. Chang, J. Korea Foundry Soc., 32, 269 (2012).   DOI
11 S. J. Park, T. Li, C. H. Kim, J. P. Park and S.Y. Chang, Korean J. Mater. Res., 22, 97 (2012).   DOI
12 J. Y. Suh, S. J. Park, D. Y. Kwon and S.Y. Chang, Korean J. Mater. Res., 28, 499 (2018).   DOI
13 J. H. Peng, X. L. Tang, J. T. He and D. Y. Xu, Trans. Nonferrous Met. Soc. China, 21, 1950 (2011).   DOI
14 J. S. Suh, S. J. Park, H. K. Lee and S. Y. Chang, Korean J. Mater. Res., 30, 51 (2020).   DOI
15 R. Kacar and M. Acarer, J. Mater. Process. Technol., 152, 91 (2004).   DOI