• Title/Summary/Keyword: interface parameters

Search Result 974, Processing Time 0.027 seconds

A Review of Ac-impedance Models for the Analysis of the Oxygen Reduction Reaction on the Porous Cathode Electrode for Solid Oxide Fuel Cell

  • Kim, Ju-Sik;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.106-114
    • /
    • 2005
  • This article covers the theoretical ac-impedance models for the analysis of oxygen reduction on the porous cathode electrode f3r solid oxide fuel cell (SOFC). Firstly, ac-impedance models were explained on the basis of the mechanism of oxygen reduction, which were classified into the rate-determining steps; (i) adsorption of oxygen atom on the electrode surface, (ii) diffusion of adsorbed oxygen atom along the electrode surface towards the three-phase (electrode/electrolyte/gas) boundaries, (iii) surface diffusion of adsorbed oxygen atom m ixed with the adsorption reaction of oxygen atom on the electrode surface and (iv) diffusion of oxygen vacancy through the electrode coupled with the charge transfer reaction at the electrode/gas interface. In each section for ac-impedance model, the representative impedance plots and the interpretation of important parameters attributed to the oxygen reduction reaction were explained. Finally, we discussed in detail the applications of the proposed theoretical ac-impedance models to the real electrode of SOFC system.

The Performance Analysis of the Initial Synchronization for the Direct Sequence Spread Spectrum Communication under the Rician Fading Channel (Rician Fading Channel에서의 직접대역확산통신용 초기동기 성능분석)

  • Lim, Myoung-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1998
  • In this paper, the performance about the CDMA inital synchronization under the Rician fading channel, which is actively studied as a CAI for IMT2000(FPLMTS) is analyzed. Through the performance analysis with the double dwell serial search code acquisition, the minimum mean initial synchronization acquisition time vs signal detection threshold value and first dwell duration time respectively with parameters of false alarm probability, detection probability and test PN chips is presented and the results show the mean initial synchronization acquisition time is increased with lower slope than Rayleigh fading as the threshold value of the initial synchronization acquisition decision is increased.

  • PDF

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes

  • Wang, Hongyan;Tang, Lihua;Shan, Xiaobiao;Xie, Tao;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.247-266
    • /
    • 2014
  • Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Numerical Analysis about the Time Characteristics of Space Charge Distribution and Measured Current in LDPE (LDPE에서 공간전하분포와 측정전류의 시간특성에 대한 수치해석)

  • Hwang, Bo-Seung;Park, Dae-Hui;Nam, Seok-Hyeon;Gwon, Yun-Hyeok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.502-509
    • /
    • 2000
  • In this paper in order to evaluat quantitavely the formation mechanism of space charge and its effects on the conduction characteristics in LDPE we have carried out the numerical analysis on the basis of experimental results of space charge distribution cathode field and current with time which had been simultaneously measured at applied field of 50kV/mm and room temperature. As the models for numerical analysis we employ the Richarson-Schottky theory for charge injection from electrode into LDPE and the band-tail conduction at crystalline regions and the hopping conduction by traps which mainly exist at the interface regions of crystalline-amorphous region for charge transport in LDPE. Futhermore in order to investigate the influence of physical parameters on the time characteristcs of space charge distribution and measured current we have changed the values of trap density activation energies for charge injection and transport and have analyzed their effects.

  • PDF

The development of discharge reactor for water purification and the fundamental study on the change of water characteristics (수질 개선용 방전 리액터의 개발과 기본적 수질 특성 변화 조사)

  • Han, Sang-Bo;Park, Jae-Youn;Kim, Jong-Seog;Jung, Jang-Gun;Koh, Hee-Seog;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2193-2195
    • /
    • 2005
  • The hybrid discharge reactor was designed for the application of wastewater treatment and the removal of hazardous volatile organic substances in water. This discharge type was similar to the barrier discharge, and the surface discharge on the dielectric surface was propagated to the water surface. That caused the heterogeneous chemical reaction strongly at the interface between the working gases and the water surface. Changes of the conductivity, acidity, and the dissolved ozone with respect to the treatment time and water quantities were studied as the fundamental experiment. The concentration of hydrogen ions largely increased with increasing the treatment time and the conductivity increased with respect to the increase of water quantities under the constant other discharge parameters.

  • PDF

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Stabilization Control of the Inverted Pendulum System by Hierarchical Fuzzy Inference Technique (계층적 퍼지추론기법에 의한 도립진자 시스템의 안정화 제어)

  • Lee, Joon-Tark;Chong, Hyeng-Hwan;Kim, Tae-Woo;Choi, Woo-Jin;Park, Chong-Hun;Kim, Hyeng-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1104-1106
    • /
    • 1996
  • In this paper, a hierarchical fuzzy controller is proposed for the stabilization control of the inverted pendulum system. The design of controller for that system is difficult because of its complicated nonlinear mathematical model with unknown parameters. Conventional fuzzy control strategy based only on dynamics of pendulum made have failed to stabilize. However, proposed control strategies are to swing pendulum from natural stable up equilibrium point to an unstable equilibrium point and are to transport a cart from an arbitrary position toward a center of rail. Thus, the proposed fuzzy stabilization controller have a hierarchical fuzzy inference structure; that is, the lower level is for inference interface for the virtual equilibrium point and the higher level one for the position control of cart according to the firstly inferred virtual equilibrium point.

  • PDF

A Study on Developing the Simulation Model of Micro-Sources (마이크로소스의 EMTDC 시뮬레이션 모델 개발에 관한 연구)

  • Son, Kwang-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.24-32
    • /
    • 2005
  • Micro-source units having power ratings in thousands of watts can provide power quality with higher reliability and efficiency than the conventional large scale units. Since these units are small and easy to install, they are clustered with loads creating micro-grid services to customer sites such as office buildings, industrial parks and homes. Micro-sources adopt voltage source inverter to ensure the power quality of sensitive loads. This paper deals with the connection of micro-sources into the system grid EMTDC modeling of the grid connected micro-sources at the power frequency range are proposed and the characteristics of the control system parameters are investigated. Simulation results show that the micro-grid system with two micro-sources has good dynamic characteristics.

Low Temperature Bonding of Copper with Interlayers Coated by Sputtering(Part 1) (스퍼터링 코팅층을 중간재로 사용한 동(Cu)의 저온 접합(제1보))

  • Kim, Dae-Hun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.63-79
    • /
    • 1994
  • This article reports a experimental study of the method to achieve a bond joint at lower temperature in a short time. DC magnetron sputtering of Sn, Sn/Pb, Sn/In and Sn/Cu on copper substrate was provided as an interlayer for Cu to Cu bonding under the air environment. Various examination was conducted and investigated on the effect of experimental parameters such as coating materials, coating time(or coating thickness), bonding temperature and bonding time etc. Bonding was performed at the temperature of $210^\circC-320^\circC$ for 0sec and interfacial reaction between the coated layer and copper substrate was examined using optical, scanning electron microscope and x-ray diffractometer. From the obtained results, it was found that intermetallic compounds layer consisted of $\eta-phase(Cu_6Sn_5)$ and $\beta-phase(Cu_3Sn)$ was formed at the joint interface for almost all coating materials. But the dominant phase formed in the preetched Cu substrate coated with Sn was $\beta-phase$. A characteristic morphology looks like a reaction ring, which was believed as the strong interconnecting regions between two substrates, was found to be formed on the reaction surface of copper substrates. The morphologies and compositions of the intermetallics, which depends on the regions of the reaction surface, was appeared as greatly different. Based on above results, the new bonding process to make the joint at lower temperature for short time can be admitted as a feasible process.

  • PDF