Browse > Article
http://dx.doi.org/10.5229/JKES.2005.8.2.106

A Review of Ac-impedance Models for the Analysis of the Oxygen Reduction Reaction on the Porous Cathode Electrode for Solid Oxide Fuel Cell  

Kim, Ju-Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of the Korean Electrochemical Society / v.8, no.2, 2005 , pp. 106-114 More about this Journal
Abstract
This article covers the theoretical ac-impedance models for the analysis of oxygen reduction on the porous cathode electrode f3r solid oxide fuel cell (SOFC). Firstly, ac-impedance models were explained on the basis of the mechanism of oxygen reduction, which were classified into the rate-determining steps; (i) adsorption of oxygen atom on the electrode surface, (ii) diffusion of adsorbed oxygen atom along the electrode surface towards the three-phase (electrode/electrolyte/gas) boundaries, (iii) surface diffusion of adsorbed oxygen atom m ixed with the adsorption reaction of oxygen atom on the electrode surface and (iv) diffusion of oxygen vacancy through the electrode coupled with the charge transfer reaction at the electrode/gas interface. In each section for ac-impedance model, the representative impedance plots and the interpretation of important parameters attributed to the oxygen reduction reaction were explained. Finally, we discussed in detail the applications of the proposed theoretical ac-impedance models to the real electrode of SOFC system.
Keywords
Solid oxide fuel cell; Adsorption; Diffusion impedance; Oxygen reduction; Ac-impedance spectroscopy.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.B. Adler, 'Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1x}Sr_xCoO_{3\delta}$ Electrodes', Solid State Ionics, 111, 125 (1998)   DOI   ScienceOn
2 S. P. Jiang, 'Issues on Development of $(La,Sr)MnO_3$ Cathode for Solid Oxide Fuel Cells', J. Power Sources, 124, 390 (2003)   DOI   ScienceOn
3 J. Nowotny and M. Rekas, 'Defect Chemistry of $(La,Sr)MnO_3$', J. Am. Ceram. Soc., 81, 67 (1998)
4 S. P. Jiang, 'A Comparison of $O_2$ Reduction Reactions on Porous $(La,Sr)MnO_3$ and$(La,Sr)(Co,Fe)O_3$ Electrodes', Solid State Ionics, 146, 1 (2002)   DOI   ScienceOn
5 S. B. Adler, J. A. Lane, and B. C. H. Steele, 'Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes', J. Electrochem. Soc., 143, 3554 (1996)   DOI
6 T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi, and Z. Takehara, 'Preparation of Perovskite- Type $La_{1-x}Sr_xMnO_3$ Films by Vapor-Phase Processes and Their Electrochemical Properties II. Effects of Doping Strontium to $LaMnO_3$ on the Electrode Properties', J. Electrochem. Soc., 145, 1999 (1998)   DOI   ScienceOn
7 J.-S. Kim, S.-I. Pyun, I.-W. Lee, and R.-H, Song, 'Kinetics of Oxygen Reduction on Porous Mixed Conducting $(La_{0.85}Sr_{0.15})_{0.9}MnO_3$ Electrode by Ac-Impedance Analysis', submitted to Electrochim. Acta for publication, (2005)   DOI
8 S. B. Adler, Chem. Rev., 'Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes ', 104, 4791 (2004)   DOI   ScienceOn
9 F. W. Poulsen, 'Defect Chemistry Modelling of Oxygen-Stoichiometry, Vacancy Concentrations, and Conductivity of $(La_{1x}Sr_x)_yMnO_{3\pm\delta}$', Solid State Ionics, 129, 145 (2000)   DOI   ScienceOn
10 S. P. Jiang and J. G Love, 'Origin of the Initial Polarization Behavior of Sr-doped $LaMnO_3$ for $O_2$ Reduction in Solid Oxide Fuel Cells', Solid State Ionics, 138, 183 (2001)   DOI   ScienceOn
11 D. Braunshtein, D. S. Tannhauser, and I. Riess, 'Diffusion-Limited Charge Transport at Platinum Electrodes on Doped $CeO_2$', J. Electrochem. Soc., 128, 82 (1981)   DOI   ScienceOn
12 J. Sasaki, J. Mizusaki, S. Yamauchi, and Kazuo Fueki, 'Studies on Electrode Processes of Stabilized Zirconia Cell System by Complex Impedance Method', Bull. Chem. Soc. Jpn., 54, 1688 (1981)   DOI
13 R. Jimenez, T. Kloidt, and M. Kleitz, 'Reaction-Zone Expansions and Mechanism of the $O_2$, Ag/Yttria-Stabilized Zirconia Electrode Reaction', J. Electrochem. Soc., 144, 582 (1997)   DOI   ScienceOn
14 K. Tsuneyoshi, K. Mori, and A. Sawata, 'Kinetic Studies on the Reaction at the $La_{0.6}Ca_{0.4}MnO_3/YSZ$ Interface, as an SOFC Air Electrode', Solid State Ionics, 35, 263 (1989)   DOI   ScienceOn
15 N. Q. Minh, S. P. S. Badwal, M. J. Bannister, and R. H. J. Hannink (Ed.), Science and Technology of Zirconia, Technomic Publishing Co., Lancaster, pp. 652-687 (1993)
16 N. Q. Minh and T. Takahashi, Science, Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, pp. 117-146 (1995)
17 E. Siebert, A. Hammouche, and M. Kleitz, 'Impedance Spectroscopy Analysis of $La_{1x}Sr_xMnO_3$- Yttria-Stabi1ized Zirconia Electrode Kinetics', Electrochim. Acta, 40, 1741 (1995)   DOI   ScienceOn
18 X. J. Chen, K. A. Khor, and S. H. Chan, 'Identification of $O_2$ Reduction Processes at Yttria Stabilized Zirconiallsoped Lanthanum Manganite Interface', J. Power Sources, 123, 17 (2003)   DOI   ScienceOn
19 M. J. Verkerk and A. J. Burggraaf, 'Oxygen Transfer on Substituted $ZrO_2,\;BiO_3\;and\;CeO_2$ Electrolytes with Platinum Electrodes', J. Electrochem. Soc., 130, 78 (1983)   DOI
20 R. U. Atangulov and I.V. Murygin, 'Gas Electrode Impedance with Slow adsorption and Surface Diffusion', Solid State Ionics, 67, 9 (1994)
21 B. A. Boukamp and H. J. M. Bouwmeester, 'Interpretation of the Gerischer Impedance in Solid State Ionics', Solid State Ionics, 157, 29 (2003)   DOI   ScienceOn
22 J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, 'Nonstoichiometry of the Perovskite- Type Oxides $La_{1x}Sr_xCoO_3$', J. Solid State Chem., 80, 102 (1989)   DOI   ScienceOn
23 A. M. Svensson, S. Sunde, and K. Nisancioglu, 'A Mathematical Model of the Porous SOFC Cathode', Solid State Ionics, 86-88, 1211 (1996)   DOI   ScienceOn
24 J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, 'Electrode Reaction at Pt, $O_2(g)$/Stabilized Zirconia Interfaces. Part I: Theoretical Consideration of Reaction Model', Solid State Ionics, 22, 313 (1987)
25 J. Mizusaki, H. Tagawa, K. Tsuneyoshi, and A. Sawata, 'Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode $La_{0.6}Ca_{0.4}MnO_3/YSZ$', J. Electrochem. Soc., 138, 1867 (1991)
26 M. J. L. Ostergard and M. Mogensen, 'Ac Impedance Study of the Oxygen Reduction Mechanism on $La_{1x}Sr_xMnO_3$ in Solid Oxide Fuel Cells', Electrochim. Acta, 38, 2015 (1993)   DOI   ScienceOn
27 Y. Matsuzaki and I. Yasuda, 'Relationship between the Steady-State Polarization of the SOFC Air Electrode, $La_{0.6}Sr_{0.4}MnO_{3+\delta}/YSZ$, and its Complex Impedance Measured at the Equilibrium Potential', Solid State Ionics, 126, 307 (1999)   DOI   ScienceOn
28 G. W. Coffey, L. R. Pederson, and P. C. Rieke, 'Competition Between Bulk and Surface Pathways in Mixed Ionic Electronic Conducting Oxygen Electrodes', J. Electrochem. Soc., 150, A1139 (2003)   DOI
29 X. J. Chen, K. A. Khor, and S. H. Chan, 'Electrochemical Behavior of $La(Sr)MnO_3$ Electrode under Cathodic and Anodic Polarization', Solid State Ionics, 167, 379 (2004).   DOI   ScienceOn
30 A. J. A. Wmnubst, A. H. A. Scharenborg, and A. J. Burggraaf, 'The Electrode Resistance of $ZrO_2-Y_2O_3(-Bi_2O_3)$ Solid Electrolytes with Pt Electrodes', Solid State Ionics, 14,319 (1984)   DOI   ScienceOn
31 W. Vielstich, H. A. Gasteiger, and A. Lamm, Handbook of Fuel Cells-Fundamentals, Technology and Applications, John Wiley & Sons, New York, pp. 588-600 (2003)
32 B. Gharbage, T. Pagnier, and A. Hammou, 'Oxygen Reduction at $La_{0.5}Sr_{0.5}MnO_3$ Thin Film/Yttria-Stabilized Zirconia Interface Studied by Impedance Spectroscopy', J. Electrochem. Soc., 141,2118 (1994)   DOI   ScienceOn