Browse > Article
http://dx.doi.org/10.12989/sss.2014.14.2.247

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes  

Wang, Hongyan (State Key Laboratory of Robotics and System, Harbin Institute of Technology)
Tang, Lihua (School of Civil and Environmental Engineering, Nanyang Technological University)
Shan, Xiaobiao (State Key Laboratory of Robotics and System, Harbin Institute of Technology)
Xie, Tao (State Key Laboratory of Robotics and System, Harbin Institute of Technology)
Yang, Yaowen (School of Civil and Environmental Engineering, Nanyang Technological University)
Publication Information
Smart Structures and Systems / v.14, no.2, 2014 , pp. 247-266 More about this Journal
Abstract
Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.
Keywords
piezoelectric cantilever; energy harvesting; segmented electrode configuration; equivalent circuit model; circuit simulation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aladwani, A., Arafa M., Aldraihem, O., Baz, A. (2012), "Cantilevered piezoelectric energy harvester with a dynamic magnifier", J.Vib. Acoust., 134(3), 031004.   DOI   ScienceOn
2 Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21.   DOI   ScienceOn
3 Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. and Technol., 17(12), 175- 195.   DOI   ScienceOn
4 du Toit, N. (2005), Modeling and design of a MEMS piezoelectric vibration energy harvester, MS Thesis, Massachusetts Institute of Technology, Boston.
5 du Toit, N., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71,121-160.   DOI   ScienceOn
6 Sodano, H.A., Park, G. and Inman, D.J. (2004), "Estimation of electric charge output for piezoelectric energy harvesting", Strain, 40(2), 49-58.   DOI   ScienceOn
7 Tang, L.H. and Yang, Y.W. (2011), "Analysis of synchronized charge extraction for piezoelectric energy harvesting", Smart Mater. Struct., 20(8), 085022.   DOI   ScienceOn
8 Tang, L.H. and Yang, Y.W. (2012), "A multiple-degree-of-freedom piezoelectric energy harvesting model", J. Intel. Mat. Syst. Str., 23(14), 1631-1647.   DOI
9 Tang, G., Liu J.Q., Yang, B., Luo, J.B., Liu, H.S., Li, YG, Yang, C.S., He DN, Dao VD, Tanaka K and Sugiyama S (2012), "Fabrication and analysis of high-performance piezoelectric MEMS generators", J. Micromech. Microeng., 22(6), 065017.   DOI   ScienceOn
10 Wang, H.Y., Shan, X.B. and Xie, T. (2012), "An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system", J. Zhejiang Univ. Sci. A, 13(7), 526-537.   DOI
11 Wu, H., Tang, L.H., Yang, Y.W. and Soh, C.K. (2013), "A novel two-degrees-of-freedom piezoelectric energy harvester", J. Intel. Mat. Syst. Str., 24(3), 357-368.   DOI
12 Yang, Y.W. and Tang, L.H. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235.   DOI
13 Yang, Y.W., Tang, L.H. and Li H.Y. (2009), "Vibration energy harvesting using macro-fiber composites", Smart Mater. Struct., 18(11), 115025.   DOI   ScienceOn
14 Zhang, Y. and Zhu, B.H.,(2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563.   DOI
15 Liang, J.R. and Liao,W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", IEEE T. Ind. Electron., 59(4), 1950-1960.   DOI   ScienceOn
16 Kim, S., Clark, W.W. and Wang, Q.M. (2005), "Piezoelectric energy harvesting with a clamped circular plate: analysis", J.Intel. Mat. Syst. Str., 16(10), 847-854.   DOI
17 Lallart, M., Pruvost S. and Guyomar, D. (2011), "Electrostatic energy harvesting enhancement using variable equivalent permittivity", Phys. Lett. A., 375(45), 3921-3924.   DOI   ScienceOn
18 Liang, J.R. and Liao,W.H. (2012), "Impedance modeling and analysis for piezoelectric energy harvesting systems", IEEE-ASME Trans.Mechatron., 17(6),1145-1157.   DOI   ScienceOn
19 Lien, I.C. and Shu, Y.C. (2011), "Array of piezoelectric energy harvesters", Proceedings of the SPIE, Conference on Active and Passive Smart Structures and Integrated Systems, San Diego, March.
20 Liu H.C., Tay C.J., Quan C.G., Kobayashi T. and Lee C.K. (2011), "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power". J. Microelectromech. S., 20(5), 1131-1142.   DOI
21 Mathuna, C.O., O'Donnell, T., Martinez-Catala, R.V., Rohan, J. and O'Flynn, B. (2008), "Energy scavenging for long-term deployable wireless sensor networks", Talanta, 75(3), 613-623.   DOI   ScienceOn
22 Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144.   DOI   ScienceOn
23 Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. (2005), "Toward energy harvesting using active materials and conversion improvement by nonlinear processing", IEEE T. Ultrason. Ferr.., 52(4), 584-595.   DOI   ScienceOn
24 Erturk, A., Tarazaga, P.A., Farmer, J.R. and Inman, D.J. (2009), "Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered Beams", J.Vib. Acoust., 131(1), 0110101-01101011.
25 Elvin, N.G. and Elvin, A.A. (2009), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9.   DOI
26 Foisal, A.R., Hong, M.C. and Chung, G.S. (2012), "Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever", Sensor. Actuat. A - Phys., 182, 106-113.   DOI   ScienceOn
27 Hagood, N.W., Chung, W. and Von, Flotow A. (1990), "Modelling of piezoelectric actuator dynamics for active structural control", J. Intel. Mat. Syst.Str., 1(3), 327-354.   DOI
28 Heinonen, E., Juuti, J. and Leppavuori, S. (2005), "Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software", J. Eur. Ceram. Soc., 25(12), 2467-2470.   DOI   ScienceOn
29 Jung, H.J., Kim, I.H. and Koo, J.H. (2011), "A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting", Smart Struct. Syst., 7(5), 379-392.   DOI
30 Kim, M., Hoegen, M., Dugundji, J. and Wardle, B.L. (2010), "Modeling and experimental verification of proof mass effects on vibration energy harvester performance", Smart Mater. Struct., 19(4), 045023.   DOI   ScienceOn
31 Paradiso, J.A. and Starner T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Comput., 4(1), 18-27.
32 Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19 (12), 125009.   DOI   ScienceOn
33 Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46.   DOI   ScienceOn
34 Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J.Vib. Acoust., 130(4), 041002.   DOI   ScienceOn