• Title/Summary/Keyword: interface heat transfer

Search Result 235, Processing Time 0.025 seconds

Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank (응축탱크로 방출되는 안정된 증기제트 응축모델)

  • 김환열;하광순;배윤영;박종균;최상민
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 2001
  • Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

  • PDF

Study on Improvement of Heat Dissipation Characteristics of TIM Material Using Radiant Energy (복사에너지를 이용한 TIM소재의 방열 특성 향상을 위한 연구)

  • Hwang, Myungwon;Kim, Dohyung;Jung, Uoo-Chang;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.58-61
    • /
    • 2019
  • The aim of this study is to quantitatively demonstrate the possibility of heat transfer by thermal radiation by comparing heat transfer by conventional heat transfer and radiation by radiation. 1) The heat transfer was measured by using filler of TIM material with low thermal conductivity (CuS). As a result, heat transfer was easier than ceramic with high thermal conductivity ($Al_2O_3$ and $Si_3N_4$). 2) The reason for this is thought to be that the infrared wave due to radiation of the air diaphragm has moved easily. 3) From the above results, the heat dissipation of the TIM material indicates the possibility of heat transfer by thermal radiation.

Evaporative Modeling in n Thin Film Region of Micro-Channel (마이크로 채널내 박막영역에서의 증발 모델링)

  • Park, Kyoung-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating (2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석)

  • Kang, Young-Seok;Rhee, Dong Ho;Cha, Bong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

Melting Heat Transfer of Liquid Ice in a Rectangular Vessel with Heated Top Wall (구형용기내 상부면가열에 의한 유동빙의 융해열전달)

  • 김명환;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 1995
  • Melting characteristics of unrestrained liquid ice in a rectangular vessel with heated top wall were investigated experimentally. The liquid ice, a mixture of ice particles and ethylene-glycol aqueous solution, was adopted as a testing material. During the melting process the liquid ice was drawn by buoyancy to the heated top wall of the rectangular vessel where close-contact melting occured. The melting behavior and melting rate of the liquid ice as well as local/mean heat-transfer coefficient at the heated top wall were observed and measured under a variety of conditions of heat flux and various initial concentration of the aqueous binary solution. It was found that the heat transfer of the heated top wall is remarkably promoted by the close-contact melting, and that the dendritic frozen layer at the lower interface of the liquid ice is formed. Photographic evidence demonstrated that plumes containing solute-rich liquid issued from isolated chimneys within the liquid ice layer where segregation of interstitial channel took place.

  • PDF

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

A study on the heat dissipation characteristic of thermal interface materials with Graphene, Cu and Ag nano powders (Graphene, Cu와 Ag 나노 파우더를 이용한 열전도재의 방열 특성에 관한 연구)

  • Park, Sang-Hyeok;Im, Sung-Hoon;Kim, Hyun-Ji;Noh, Jung-Pil;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.767-773
    • /
    • 2019
  • The thermal diffusion performance of the electronic device is a factor for evaluating the stability of the electronic device. Therefore, many of research have been conducted to improve the thermal characteristics of thermal interface materials, which are materials for thermal diffusion of electronic products. In this study, nano thermal grease was prepared by blending graphene, silver and copper nano powders into a thermal grease, a type of thermal interface materials, and the heat transfer rate was measured and compared for the purpose of investigating the improved thermal properties. As a result, the thermal properties were good in the order of graphene, silver and copper, which is thought to be due to the different thermal properties of the nano powder itself.

Effects of Density Change and Cooling Rate on Heat Transfer and Thermal Stress During Vertical Solidification Process (수직응고 시스템에서 밀도차와 냉각률이 열전달 및 열응력에 미치는 영향)

  • 황기영;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1095-1101
    • /
    • 1995
  • Numerical analysis of vertical solidification process allowing solid-liquid density change is performed by a hybrid method between a winite volume method (FVM) and a finite element method (FEM). The investigation focuses on the influence of solid-liquid density change and cooling rates on the motion of solid-liquid interface, solidified mass fraction, temperatures and thermal stresses in the solid region. Due to the density change of pure aluminium, solid-liquid interface moves more slowly but the solidified mass fraction is larger. The cooling rate of the wall is shown to have a significant influence on the phase change heat transfer and thermal stresses, while the density change has a small influence on the motion of the interface, solidified mass fraction, temperature distributions and thermal stresses. As the cooling rate increases, the thermal stresses become higher at the early stage of a solidification process, but it has small influence on the final stresses as the steady state is reached.

Effects of Subcooling and Natural Convection on the Melting inside a Horizontal Tube (수평원관내에서 과냉각 및 자연대류가 융해과정에 미치는 영향)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2079-2087
    • /
    • 1993
  • The effects of subcooling and natural convection are studied numerically on the melting process of an initially subcooled phase-change medium filled inside a horizontal circular cylinder. It is postulated that melting continues with the tube wall kept at a constant temperature and with the unmelted solid core fixed. Primary emphasis is placed on the evolution of interface morphology, the local/overall heat transfer rate at the tube wall and at the interface, and the structure of natural convection. The numerical results are mainly presented in terms of the Rayleigh and subcooling numbers. As the degree of subcooling intensifies, the melting rate and the movement of the interface are impeded but the interfaces are of similar shape with the passage of time. The heat transfer characteristics are found to be mostly governed by the formation pattern of natural convection in the liquid phase. Good agreement with available experimental data is found.

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.