Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank

응축탱크로 방출되는 안정된 증기제트 응축모델

  • Published : 2001.11.01

Abstract

Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

물과 증기의 직접접촉에 의한 응축 열전달은 움직이는 증기/물 경계면에서 열 및 물질 전달이 이루어지는 현상으로서, 매우 큰 열전달계수를 수반하는 특징이 있기 때문에 이를 응용한 설계가 산업계에서 광범위하게 이루어지고 있다. 본 연구에서는 단일 수평 배관을 통해 과냉각수가 있는 응축탱크로 안정된 증기제트가 방출될 때, 증기제트 형상을 예측하는 간단한 응축해석모델을 제시하였다. 해석모델은 축대칭 좌표계에서 질량, 운동량 및 에너지 방정식과 증기/물 경계면에서 의 응축 특성을 고려한 열평형 방정식을 사용하여 유도하였다. 증기/물 경계에서의 매우 큰 열전달율은 기존의 실험을 근거로 한 유효열전도계수에 의해 반영되었다. 해석결과는 실험결과와 비교하였고, 제시된 해석 모델은 실험에서 관찰된 바와 같이 증기 질량유속과 수조 온도가 증가할수록 증기제트 크기(반경 및 길이)가 증가하는 경향을 보였다.

Keywords

References

  1. Proc. 4th Int. Heat Transfer Conf. v.6 Condensation of a High Velocity Vapor on a Subcooled Liquid Jet in Straight Flow Linehan, J.H.;Grolmes, M.A.
  2. Int. J. Heat Mass Transfer v.35 no.1 Prediction of Heat Transfer by Direct Contact Condensation at a Steam- Subcooled Water Interface Murata, A.;Hihara, E.;Saito, T.
  3. Experimental Thermal and Fluid Science v.15 A Theoretical adn Experimental Investigation of Direct-Contact Condensation on a Liquid Layer Mikielewicz, J.;Trela, M.;Ihnatowicz, E.
  4. Int. J. Heat Mass Transfer v.32 no.4 A Comprehensive Analysis of Direct Contact Condensation of Saturated Steam on Subcooled Liquid Jets Celata, G.P.;Cumo, M.;Farello, G.E.;Focardi, G.
  5. AIChE J. v.19 no.3 Penetration of Vapor Jets Submerged in Subcooled Liquids Weimer, J.C.;Faeth, G.M.;Olson. D.R.
  6. Pro. 5th Int. Heat Transfer Conf. v.3 Basic Study of Vapor Suppression Kudo, A.;Egusa, T.;Toda, S.
  7. Energy Engg. J. v.8 no.2 An Analytical Study on the Condensatin of Submerged Vapor Jets in Subcooled Liquids Kim, K.U.;Lee, K.B.;Kim, H.Y.
  8. KAERI/TR-962/98 A Study on the Behavior of Bubble in Quenching Tank and Optimal Sparger Design Kim, H.Y.(et al.)
  9. Compressible Fluid Dynamics with Personal Computer Applications Hodge, B.K.;Koenig, K.