• 제목/요약/키워드: interface efficiency

Search Result 1,109, Processing Time 0.03 seconds

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review

  • Dao, Vinh Ai;Kim, Sangho;Lee, Youngseok;Kim, Sunbo;Park, Jinjoo;Ahn, Shihyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Heterojunction with Intrinsic Thin-layer (HIT) solar cells are currently an important subject in industrial trends for thinner solar cell wafers due to the low-temperature of production processes, which is around $200^{\circ}C$, and due to their high-efficiency of 24.7%, as reported by the Panasonic (Sanyo) group. The use of thinner wafers and the enhancement of cell performance with fabrication at low temperature have been special interests of the researchers. The fundamental understanding of the band bending structures, choice of materials, fabrication process, and nano-scale characterization methods to provide necessary understanding of the interface passivation mechanisms, emitter properties, and requirements for transparent oxide conductive layers is presented in this review. This information should be used for the performance characterization of the developing technologies for HIT solar cells.

Study in Analyzing Method of Web Interface Design (웹 인터페이스디자인 분석방법 연구)

  • 이현주;이정현;방경락;류성현;신계옥;이은주
    • Archives of design research
    • /
    • v.14 no.2
    • /
    • pp.209-216
    • /
    • 2001
  • With rapid growth of internet uses and the new media, web has become a new medium of communicating and sharing of information. Therefore, the methodology of web interface design must be set to improve the efficiency of communicating and sharing information The study has researched on analyzing method of web interface design for effective uses of web. The study is a precedent research of methodology of web interface design based on the following structures-grouping web contents, information architecture, web page design, structural elements of interface design. Accordingly, the study provides the analyzing method of web interface design with the basis of its structural elements. The analyzing method of web interface design is divided into three steps-grouping of web sites, analyzing structural elements, and evaluation. As a result, grouping and embodying of interface design brings usability guideline for design development as well as collecting of data for examining further results through design processes.

  • PDF

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

The a-Si:H/poly-Si Heterojunction Solar Cells

  • Kim, Sang-Su;Kim, do-Young;Lim, Dong-Gun;Junsin Yi;Lee, Jae-Choon;Lim, Koeng-Su
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.65-71
    • /
    • 1997
  • We present heterojunction solar cells with a structure of metal/a-Si:H(n-i-p)/poly-Si(n-p)/metal for the terrestrial applications. This cell consists fo two component cells: a top n-i-p junction a-Si:Hi cell with wide-bandgap 1.8eV and a bottom n-p junction poly-Si cell with narrow-bandgap 1.1eV. The efficiency influencing factors of the solar cell were investigated in terms of simulation an experiment. Three main topics of the investigated study were the bottom cell with n-p junction poly-Si, the top a-Si:H cell with n-i-p junction, and the interface layer effects of heterojunction cell. The efficiency of bottom cell was improved with a pretreatment temperature of 900$^{\circ}C$, surface polishing, emitter thickness of 0.43$\mu\textrm{m}$, top Yb metal, and grid finger shading of 7% coverage. The process optimized cell showed a conversion efficiency about 16%. Top cell was grown by suing a photo-CVD system which gave an ion damage free and good p/i-a-Si:H layer interface. The heterojunction interface effect was examined with three different surface states; a chemical passivation, thermal oxide passivation, and Yb metal. the oxide passivated cell exhibited the higher photocurrent generation and better spectral response.

  • PDF

A Study on Enhancing the Efficiency of Design Work in Figma using Generative AI (생성형 AI를 활용한 프로그램 피그마(Figma)의 디자인 작업 효율성 증진 방안 연구)

  • Seo Dan Bi;Seung In Kim
    • Industry Promotion Research
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 2024
  • This study investigates ways to enhance the efficiency of design work in Figma through the use of generative AI. By applying Stephen Anderson's Creating Pleasurable Interface Model, the analysis focuses on six key elements: functional, reliable, usable, convenience, pleasure, and meaningful. In-depth interviews and survey results indicate that Figma's generative AI plugins received generally positive evaluations, particularly for their convenience and usability. However, difficulties in prompt creation and the inconvenience of plugin searches were identified as areas needing improvement. This study provides directions for improving Figma's generative AI capabilities and suggests strategies to enhance the efficiency of design work in practical applications. The study outlines how generative AI can boost designers' creativity and productivity, offering personalized features. These findings serve as a foundation for future design research and practical applications.

Moving Least Squares Interface Welding Method for Coupled Analysis of Independently Modeled Finite Element Substructures (독립적으로 모델링된 유한요소 부분구조물 시스템의 통합 연계해석을 위한 이동최소자승 정계접합법의 개발)

  • An, Jae-Mo;Song, You-Me;Choi, Dong-Whan;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a novel moving least squares interface welding method is proposed to carry out the coupled analysis of whole model composed of independently modeled finite element substructures with nodal mismatching interfaces. To verify the validity, and efficiency of the proposed interface welding method, various numerical examples are worked out including patch tests, convergence tests, and examples of coupled analyses of the structural systems with mismatching substructures. From the numerical tests, it is confirmed that one can efficiently carry out the coupled analysis of whole model composed of mismatching finite element substructures through the proposed method without any remeshing or any additional unknown.

Preparation of Interface-Assembled Carbonyl Reductase and Its Application in the Synthesis of S-Licarbazepine in Toluene/Tris-HCl Buffer Biphasic System

  • Ou, Zhimin;Xu, Jiahui;Du, Lihua;Tang, Lan;Niu, Yangping;Cui, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.613-621
    • /
    • 2018
  • In this study, interface-assembled carbonyl reductase (IACR) was prepared and used in the synthesis of S-licarbazepine in a toluene/Tris-HCl biphasic system. The carbonyl reductase (CR) was conjugated with polystyrene to form a surfactant-like structure at the interface of the toluene/Tris-HCl biphasic system. The interface-assembled efficiency of IACR reached 83% when the CR (180 U/mg) and polystyrene concentration were $8{\times}10^2g/ml$ and $3.75{\times}10^3g/ml$, respectively. The conversion reached 95.6% and the enantiometric excess of S-licarbazepine was 98.6% when $3.97{\times}10^6nmol/l$ oxcarbazepine was converted by IACR using 6% ethanol as a co-substrate in toluene/Tris-HCl (12.5:10) at $30^{\circ}C$ and $43{\times}g$ for 6 h. IACR could be reused efficiently five times.

SAP ERP System Data Input Interface Design Analysis and New Implementation Approach Proposal (SAP ERP 시스템 데이터 입력 인터페이스 기술현황 분석 및 새로운 구현 방안 제안)

  • Kim, Yeong Real
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • ERP Systems can not meet All the Requirements that Needed in Their Enterprise Organizations. After the System Introduced, when it perates with Existing Systems or with New Systems, the Need for Strong Interface Technology along with the Appearance of the ERP have been gradually Increased. Interface Technologies for SAP R/3 Systems integrate Mulltiple R / 3 Systems and non R / 3 Systems, and play Important Role in Expanding the Company's Business Process. New VBA Approach was implemented as the Data Interface Design between SAP R / 3 and Other Systems. It proved to Reduce the Feeling of Resistance from User's Point of View. It also Proved to Improve the Operational Efficiency with More Convenient Input and Output Manner of Purchase Request Data.

A study on Real-time Graphic User Interface for Hidden Target Segmentation (은닉표적의 분할을 위한 실시간 Graphic User Interface 구현에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2016
  • This paper discusses a graphic user interface(GUI) for the concealed target segmentation. The human subject hiding a metal gun is captured by the passive millimeter wave(MMW) imaging system. The imaging system operates on the regime of 8 mm wavelength. The MMW image is analyzed by the multi-level segmentation to segment and identify a concealed weapon under clothing. The histogram of the passive MMW image is modeled with the Gaussian mixture distribution. LBG vector quantization(VQ) and expectation and maximization(EM) algorithms are sequentially applied to segment the body and the object area. In the experiment, the GUI is implemented by the MFC(Microsoft Foundation Class) and the OpenCV(Computer Vision) libraries and tested in real-time showing the efficiency of the system.