• 제목/요약/키워드: interface crack

검색결과 518건 처리시간 0.024초

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • 이광호;;;;황재석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

이종재 브레이징 계면에서의 균열거동해석 (Analysis of Crack Behavior of dissimilar materials in Brazed Interface By BEM)

  • 오환섭;김시현;김성재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.269-274
    • /
    • 2001
  • Applications of Brazing in the studying fields such as High-Speed Machining are very increasing in various industry fields. Therefore, Applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem Dissimilar Materials in Brazed Interface. In this study, Stress intensity Factor (S.I.F) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a Hardmetal and a HSS by two dimensional(2-D) Boundary Element Method (BEM). Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

경계요소법에 의한 탄성-점탄성 복합구조체의 계면균열 해석 (Boundary Element Evaluation of Stress Intensity Factor for Interface Crack in Elastic and Viscoelastic Composite Materials)

  • 이상순;김정규;황종근
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.85-91
    • /
    • 1996
  • 이 논문에서는 탄성-점탄성 복합재료의 공유면에 존재하는 계면균열에 대한 해석방법을 제시하고 있다. 먼저 탄성-점탄성 대응원리를 이용하여 탄성해석식으로부터 응력확대계수에 대한 식을 유도하였다. 다음으로 시간영역 경계요소법을 이용하여 균열선단에서의 응력을 계산한 다음 응력확대계수의 값을 구하였다. 수치해석의 결과는 본 논문의 정확성과 응용가능성을 보여준다.

  • PDF

초음파 탐상법을 이용한 접착이음에 대한 계면 균열의 검출 (Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints)

  • 정남용;박성일;이명대
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.415-423
    • /
    • 2001
  • In is well recognized that the ultrasonic method is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interface crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients and experimental accuracy by the ultrasonic method in the adhesively bonded joints have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Riplings equation.

재료의 소성 거동을 고려한 용접 계면균열의 Ct 매개변수 (Evaluation of Ct-parameter for Weld Interface Crack Considering Material Plastic Behavior)

  • 윤기봉;이진상
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.676-684
    • /
    • 2000
  • In this study, behavior of $C_t$ which is a well-known fracture parameter characterizing creep crack growth rate, is investigated for weld interface cracks. Finite element analyses were per formed for a C(T) specimen under constant loading condition for elastic-plastic-creeping materials. In modeling C(T) geometry, an interface was employed along the crack plane which simulated the interface between weld and base metals. The $C_t$ versus time relations were obtained under various creep constant combinations and plastic constant combinations for weld and base metals, respectively. A unified $C_t$ versus time curve is obtained by normalizing $C_t$ with $C^*$ and t with $t_T$ for all the cases of material constant variations.

이종 접합체에 대한 혼합모드 파기기준의 설정 (Establishment of fracture Criterion for Mixed Mode in Bonded Dissimilar Materials)

  • 정남용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.254-260
    • /
    • 1998
  • Application of bonded dissimilar materials in various industries are increasing. When these materials are used in structures, it needs to investigate strength evolution applying fracture mechanics. Al/Epoxy bonded dissimilar materials with an interface crack and an interface crack emanating from an edge semicircular hole were prepared for the static tests so that experiment of fracture toughness were carried out. Stress intensity factors of interface cracks in bonded dissimilar materials were computed with boundary element method(BEM) and the fracture criterion of mixed mode crack were analyzed. From the results, the fracture criterion and the method of strength evolution by the fracture toughness in Al/Epoxy bonded dissimilar materials were proposed.

  • PDF

이종재 브레이징 계면에서의 균열거동 해석 (Analysis of Crack Behavior of Brazed Interface in Dissimilar Materials using BEM)

  • 오환섭;김시현;김성재;양인수
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.91-97
    • /
    • 2002
  • Applications of brazing in the studying fields such as high-speed machining are very increasing in various industry fields. Therefore, applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem dissimilar materials in brazed interface. In this study, stress intensity factor(SIF) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a hardmetal and a HSS by two dimensional(2-D) BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine SIF.

수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정 (Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow)

  • 이강용;설창원
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.201-208
    • /
    • 1991
  • 본 연구에서는 균일 열유동이 접합면에 수직으로 흐르고 접합 경계면 균열의 열경계조건이 단열되어 있는 경우에 균질 및 접합재료 모두에 적용될 수 있는 열응세 기계수를 복소해석방법을 이용하여 구하고자 한다.

이종재료 접합재의 편측접합계면균열의 응력확대계수 해석 및 피로균열성장 해석 (Anaysis of the Interfacial Stress Intensity Factors and Fatigue Crack Growth Behaviour for the Edge Interface Crack in the Dissimilar Materials)

  • 이갑래;최용식
    • 한국안전학회지
    • /
    • 제6권2호
    • /
    • pp.5-13
    • /
    • 1991
  • In this paper, the interfacial stress intensity factors( $K_{i}$$K_1$+i $K_2$) for the edge interface crack in the dissimilar materials(isotropic-isotropic materials, isotropic-composite materials) were analysed by BEM(Boundary Element Method). The fatigue crack growth behaviour was investigated by load constant fatigue test. From the experimental results, the relationship between da/dN and interfacial stress intensity facto, ( $K_{i}$ or $K_1$) can be expressed by Paris'law for homogeneous materials.s.s.

  • PDF

계면균열 문제에 대한 L적분의 응용 (Application of L Integral to Interface Crack Problems)

  • 박재학;엄윤용
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.34-42
    • /
    • 1986
  • 본 논문에서는 균열면이 원호(circular arc)를 이루고, Comninou 모델과 같이 균열면의 일부가 접촉되어 있는 경우 L적분이 적분경로에 무관함을 증명하고 이를 이용하여 재료가 서로 다른 원형 개재물과 기재와의 경계면에 존재하는 계면 균열에서의 응력확대계수를 구하는 방법에 대해 살펴보았다. 기지가 무한 고체이고 접촉역이 작아 접촉역의 존재가 균열선단에서 멀리 떨어진 곳에서의 응력장에 거의 영향을 끼치지 아`는 경우에는 접촉역을 가정하지 않은 문제에 대한 해, 즉 진동특성을 나타내는 해로 부터, L적분의 성질을 이용하여, 접촉역을 가정하였을 때의 응력확대 계수를 간단한 꼴로 표시할 수 있었고, 유한의 기지에 원형 개재물이 존재하는 문제에 대해서는 F.E.M을 사용하여 L적분을 계산함으로써 응력확대계수를 구할 수 있었다.