• Title/Summary/Keyword: interface charge

Search Result 470, Processing Time 0.025 seconds

Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator

  • Jung, Arong;Rajakumar, Dhanarajan;Yoon, Bong-June;Baker, Bradley J.
    • Experimental Neurobiology
    • /
    • v.26 no.5
    • /
    • pp.241-251
    • /
    • 2017
  • Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode (리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상)

  • Lee, Bora;Lee, Jae Young;Jang, Boyun;Kim, Joonsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2019
  • $SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.

Electrical Properties of Al2O3 Gate Oxide on 4H-SiC with Post Annealing Fabricated by Aerosol Deposition (에어로졸 데포지션으로 제조된 4H-SiC 위 Al2O3 게이트 산화막의 후열처리 공정에 따른 전기적 특성)

  • Kim, Hong-Ki;Kim, Seong-jun;Kang, Min-Jae;Cho, Myung-Yeon;Oh, Jong-Min;Koo, Sang-Mo;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1230-1233
    • /
    • 2018
  • $Al_2O_3$ films with the thickness of 50 nm were fabricated on 4H-SiC by aerosol deposition, and their electrical properties were characterized with different post annealing conditions. As a result, the $Al_2O_3$ film annealed in $N_2$ atmosphere showed decreased fixed charge density at the interface area between the $Al_2O_3$ and SiC, and increased leakage currents due to the generation of oxygen vacancies. From this result, it was confirmed that proper $N_2$ and $O_2$ ratio for the post annealing process is important.

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode (전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용)

  • Wang, Xue;Shi, Ke;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

The Digital Redundancy Design for Back-up Mode Operation of Aviation Intercom (항공용 인터콤의 백업 모드 운용을 위한 디지털 방식의 이중화 설계)

  • Jeong, Seong-jae;Cho, Kyung-hak;Kim, Dong-hyouk;Lee, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.358-364
    • /
    • 2022
  • The Inter Communication System for avionics is in charge of processing all voice signals that internal calls between Pilot and Co-pilot, internal calls between Pilots and Crews, external calls through communication equipment such as Ultra/Very High Frequency Receiver/Transmitter(U/VHF RT), audio signal monitoring for navigation and mission equipment such as VHF Omnidirectional Range/Instrument Landing System(VOR/ILS), Tactical Air Navigation(TACAN), audio signal output for voice recording to Flight Data Recorder(FDR) and Data Transfer System(DTS), and warning/caution audio signal generate about the status and threat of aircraft. Because Inter Communication System for avionics is sensitive to noise in the case of analog audio signals, a redundant design that can protect audio signal from electromagnetic noise inside/outside of aircraft is required for the mission of pilots and crews. In this paper, Normal/Back-up operation mode and redundancy design plan based on digital method for the redundancy of the digital Inter Communication System for avionics and manufacturing, verification results are described.

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang;Jeon, Jae Kyoung;Moon, Young Kook;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.191-195
    • /
    • 2021
  • Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Effect of Cathode Porosity on the Cathodic Polarization Behavior of Mixed Conducting LSCF(La0.6Sr0.4Co0.2Fe0.8O3) (혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 양극분극 특성)

  • Yun, Joong-Cheul;Lee, Jong-Ho;Kim, Joosun;Lee, Hae-Weon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.251-259
    • /
    • 2005
  • In order to characterize the influence of the reaction-site density on the cathodic polarization property of LSCF, we chose the porosity of LSCF as a main controlling variable, which is supposed to be closely related with active sites for the cathode reaction. To control the porosity of cathodes, we changed the mixing ratio of fine and coarse LSCF powders. The porosity and pore perimeter of cathodes were quantitatively analyzed by image analysis. The electrochemical half cell test for the cathodic polarization was performed via 3-probe AC-impedance spectroscopy. According to the investigation, the reduction of oxygen at LSCF cathode was mainly controlled by following two rate determining steps; i) surface diffusion and/or ionic conduction of ionized oxygen through bulk LSCF phase, ii) charge transfer of oxygen ion at cathode/electrolyte interface. Moreover, the overall cathode polarization was diminished as the cathode porosity increased due to the increase of the active reaction sites in cathode layer.