DOI QR코드

DOI QR Code

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Jihyeon Ryu (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Yong-Ho Park (Department of Materials Science and Engineering, Pusan National University) ;
  • Ick-Jun Kim (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Sunhye Yang (Next Generation Battery Research Center, Korea Electrotechnology Research Institute)
  • Received : 2022.11.22
  • Accepted : 2022.12.26
  • Published : 2023.05.28

Abstract

This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Keywords

Acknowledgement

This research was supported by Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science & Technology (NST) funded by the Ministry of Science and ICT (MSIT) (No. 23A01033) and the Technology Innovation Program (20004958, Development of ultra-high performance supercapacitor and high power module) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. A. Saleem, V. Desmaris, and P. Enoksson, J. Nanomater, 2016, 1537269.
  2. M. Hahn, O. Barbieri, F. Campana, R. Kotz, and R. Gallay, Appl. Phys. A, 2006, 82(4), 633-638. https://doi.org/10.1007/s00339-005-3403-1
  3. M. Reyes, O. Martinez, I. Gil, E. Domingez, S. Vazques, K. McGrath, and W. Beez, 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 2015, 1013-1018.
  4. Y. Liu, B. Zhang, F. Wang, Z. Wen, and Y. Wu, Pure Appl. Chem., 2014, 86(5), 593-609. https://doi.org/10.1515/pac-2013-1204
  5. H. Wang, M. Yoshio, A. Thapa, and H. Nakamura, J. Power Sources, 2007, 169(2), 375-380. https://doi.org/10.1016/j.jpowsour.2007.02.088
  6. J. R. Miller and P. Simon, Electrochem. Soc. Interface, 2008, 17(1), 31.
  7. P. Simon, Y. Gogotsi, and B. Dunn, Science, 2014, 343(6176), 1210-1211. https://doi.org/10.1126/science.1249625
  8. W. G. Pell and B. E. Conway, J. Power Sources, 1996, 63(2), 255-266. https://doi.org/10.1016/S0378-7753(96)02525-6
  9. A. M. Bittner, M. Zhu, Y. Yang, H. F. Waibel, M. Konuma, U. Starke, and C. J. Weber, J. Power Sources, 2012, 203, 262-273. https://doi.org/10.1016/j.jpowsour.2011.10.083
  10. F. Markoulidis, C. Lei, and C. Lekakou, Electrochim. Acta, 2017, 249, 122-134. https://doi.org/10.1016/j.electacta.2017.07.182
  11. R. German, P. Venet, A. Sari, O. Briat, and J. M. Vinassa, 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 2012, 218-223.
  12. T. Omori, M. Nakanishi, and D. Tashima, Materials, 2021, 14(6), 1520.
  13. P. W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kotz, and A. Wokaun, Electrochim. Acta, 2010, 55(15), 4412- 4420. https://doi.org/10.1016/j.electacta.2010.02.064
  14. P. Azais, L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. L-nares-Solano, J.-P. Peres, C. Jehoulet, and F. Beguin, J. Power Sources, 2007, 171(2), 1046-1053. https://doi.org/10.1016/j.jpowsour.2007.07.001
  15. R. Kotz, M. Hahn, and R. Gallay, J. Power Sources, 2006, 154(2), 550-555. https://doi.org/10.1016/j.jpowsour.2005.10.048
  16. Y. Liu, B. Soucaze-Guillous, and P.-L. Taberna, and P. Simon, J. Power Sources, 2017, 366, 123-130. https://doi.org/10.1016/j.jpowsour.2017.08.104
  17. S. Zhou, X. Li, Z. Wang, H. Guo, and W. Peng, Trans. Nonferrous Met. Soc. China, 2007, 17(6), 1328-1333. https://doi.org/10.1016/S1003-6326(07)60271-4
  18. S. Ishimoto, Y. Asakawa, M. Shinya, and K. Naoi, J. Electrochem. Soc., 2009, 156(7), A563.
  19. P. Kurzweil and M. Chwistek, J. Power Sources, 2008, 176(2), 555-567. https://doi.org/10.1016/j.jpowsour.2007.08.070
  20. R. Kuhnel and A. Balducci, J. Power Sources, 2014, 249, 163-171. https://doi.org/10.1016/j.jpowsour.2013.10.072
  21. R. Xiao, K. Yan, J. Yan, and J. Wang, Corros. Sci., 2008, 50(6), 1576-1583. https://doi.org/10.1016/j.corsci.2008.02.017
  22. T. M. Nguyen, J. Suk, Y. Kang, J. Electrochem. Sci. Technol., 2019, 10(2), 250-255.
  23. M. S. Lee, D. H. Kim, S. C. Kim, J. Electrochem. Sci. Technol., 2018, 9(1), 9-19. https://doi.org/10.33961/JECST.2018.9.1.9
  24. H.-C. Wu, Y.-P. Lin, E. Lee, W.-T. Lin, J.-K. Hu, H.-C. Chen, and N.-L. Wu, Mater. Chem. Phys., 2009, 117(1), 294-300. https://doi.org/10.1016/j.matchemphys.2009.06.001
  25. C. Lei, F. Markoulidis, Z. Ashitaka, and C. Lekakou, Electrochim. Acta, 2013, 92, 183-187. https://doi.org/10.1016/j.electacta.2012.12.092
  26. C. Portet, P. L. Taberna, P. Simon, and C. LabertyRobert, Electrochim. Acta, 2004, 49(6), 905-912. https://doi.org/10.1016/j.electacta.2003.09.043
  27. H.-C. Wu, H.-C Wu, E. Lee, and N.-L. Wu, Electrochem. commun., 2010, 12(3), 488-491. https://doi.org/10.1016/j.elecom.2010.01.028
  28. X. Li, S. Deng, M. N. Banis, K. Doyle-Davis, D. Zhang, J. Yang, R. Divigalpitiya, F. Brandys, R. Li, and X. Sun, ACS Appl. Mater. Interfaces, 2019, 11(36), 32826-32832. https://doi.org/10.1021/acsami.9b06442
  29. T. Li, H. Bo, H. Cao, Y. Lai, and Y. Liu, Int. J. Electrochem. Sci., 2017, 12, 3099-3108. https://doi.org/10.20964/2017.04.20
  30. R. Wang, W. Li, L. Liu, Y. Qian, F. Liu, M. Chen, Y. Guo, and L. Liu, J. Electroanal. Chem., 2019, 833, 63-69. https://doi.org/10.1016/j.jelechem.2018.11.007
  31. P. Ratajczak, M. E. Suss, F. Kaasik, and F. Beguin, Energy Storage Mater., 2019, 16, 126-145. https://doi.org/10.1016/j.ensm.2018.04.031
  32. K. Mitsuda, D. Takemura, S. Aihara, K. Kubo, H. Nishiguchi, M. Kise, and S. Matsumoto, J. Jpn. Soc. Energy Resources, 2012, 33(3), 9-14.