DOI QR코드

DOI QR Code

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang (Department of Materials Science and Engineering, Korea Unversity) ;
  • Jeon, Jae Kyoung (Department of Materials Science and Engineering, Korea Unversity) ;
  • Moon, Young Kook (Department of Materials Science and Engineering, Korea Unversity) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea Unversity)
  • Received : 2021.06.28
  • Accepted : 2021.07.23
  • Published : 2021.07.31

Abstract

Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grants funded by the Korea government (2020R1A2C3008933).

References

  1. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem., Vol. 108, No. 1-2, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  2. H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
  3. B. Y. Kim, C. S. Lee, J. S. Park, and J.-H. Lee, "Preparation of Pt-, Ni- and Cr- Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties", J. Sens. Sci. Technol, Vol. 23, No. 3, pp. 211-215, 2014. https://doi.org/10.5369/JSST.2014.23.3.211
  4. S. Y. Jeong, Y. M. Jo, Y. C. Kang, and J. H. Lee, "Xylene Sensor Using Cr-doped Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis", J. Sens. Sci. Technol., Vol. 29, No. 2, pp. 112-117, 2020. https://doi.org/10.5369/JSST.2020.29.2.112
  5. D. H. Kim, Y. S. Shim, and H. W. Jang, "Synthesis of Au-Decorated TiO2 Nanotubes on Patterned Substrates for Selective Gas Sensor", J. Sens. Sci. Technol, Vol. 23, No. 5, pp. 305-309, 2014. https://doi.org/10.5369/JSST.2014.23.5.305
  6. J. H. Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: Overview", Sens. Actuator B-Chem., Vol. 140, No. 1, pp. 319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  7. Y. M. Jo, T. H. Kim, C. S. Lee, K. R. Lim, C. W. N, F Abdel-Hady, A. A. Wazzan, and J. H. Lee, "Metal-organic framework-derived hollow hierarchical Co3O4 nanocages with tunable size and morphology: ultrasensitive and highly selective detection of methylbenzenes", ACS Appl. Mater. Interfaces, Vol. 10, No. 10, pp. 8860-8868, 2018. https://doi.org/10.1021/acsami.8b00733
  8. H. J. Choi, J. H. Chung, J. W. Yoon, and J. H. Lee, "Highly selective, sensitive, and rapidly responding acetone sensor using ferroelectric ε-WO3 spheres doped with Nb for monitoring ketogenic diet efficiency", Sens. Actuator B-Chem., Vol. 338, p. 129823, 2021. https://doi.org/10.1016/j.snb.2021.129823
  9. S. Y. Jeong, J. S. Kim, and J. H. Lee, "Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction", Adv. Mater., Vol. 32, No. 51, p. 2002075, 2020. https://doi.org/10.1002/adma.202002075
  10. X. Chu., D. Jiang, G. Yu, and C. Zheng, "Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method", Sens. Actuator B-Chem., Vol. 120, No. 1, pp. 177-181, 2006. https://doi.org/10.1016/j.snb.2006.02.008
  11. B. Y. Kim, J. W. Yoon, K. Lim, S. H. Park, J. W. Yoon, and J. H. Lee, "Hollow spheres of CoCr2O4-Cr2O3 mixed oxides with nanoscale heterojunctions for exclusive detection of indoor xylene", J. Mater. Chem. C, Vol. 6, No. 40, pp. 10767-10774, 2018. https://doi.org/10.1039/c8tc04166k
  12. D. S. Jung, S. B. Park, and Y. C. Kang, "Design of particles by spray pyrolysis and recent progress in its application", Korean J. Chem. Eng., Vol. 27, No. 6, pp.1621-1645, 2010. https://doi.org/10.1007/s11814-010-0402-5
  13. X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, K. Shimanoe, N. Yamazoe, and G. Lu, "Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres", Sens. Actuator B-Chem., Vol. 206, pp. 577-583, 2015. https://doi.org/10.1016/j.snb.2014.09.080
  14. H. J. Kim, K. I. Choi, A. Pan, I. D. Kim, H. R. Kim, K. M. Kim, C. W. Na, G. Cao, and J. H. Lee, "Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion Batteries", J. Mater. Chem., Vol. 21, No. 18, pp.6549-6555, 2011. https://doi.org/10.1039/c0jm03516e
  15. J. Liu, S. Yang, W. Wu, Q. Y. Tian, S. Cui, Z. Dai, and F. Ren, "3D Flowerlike α-Fe2O3@TiO2 Core-Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance", ACS Sustain. Chem. Eng., Vol. 3, No. 11, pp. 2975-2984, 2015. https://doi.org/10.1021/acssuschemeng.5b00956
  16. X. Y. Liu, H. W. Zheng, Y. Li, and W. F. Zhang, "Factors on the Separation of Photogenerated Charges and the Charge Dynamics in Oxide/ZnFe2O4 Composites", J. Mater. Chem. C, Vol. 1, pp.329-337, 2013. https://doi.org/10.1039/C2TC00072E
  17. Q. Ma, H. Li, Y. Liu, M. Liu, X. Fu, S. Chu, H. Li, and J. Guo, "Facile synthesis of flower-like α-Fe2O3/ZnFe2O4 architectures with self-assembled core-shell nanorods for superior TEA detection", Curr. Appl. Phys., Vol. 21, pp.161-169, 2021. https://doi.org/10.1016/j.cap.2020.10.017
  18. Q. Wei, J. Sun, P. Song, J. Li, Z. Yang, and Q. Wang, "Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine", Sens. Actuator B-Chem., Vol. 317, p. 128205, 2020. https://doi.org/10.1016/j.snb.2020.128205
  19. W. Han, J. Deng, S. Xie, H. Yang, H. Dai, and C.T. Au, "Gold supported on iron oxide nanodisk as efficient catalyst for the removal of toluene", Ind. Eng. Chem. Res., Vol. 53, No. 9, pp. 3486-3494, 2014. https://doi.org/10.1021/ie5000505
  20. J. Ouyang, J. Pei, Q. Kuang, Z. Xie, and L. Zheng, "Supersaturation-controlled shape evolution of a-Fe2O3 nanocrystals and their facet- dependent catalytic and sensing properties", ACS Appl. Mater. Interfaces, Vol. 6, No. 15, pp. 12505-12514, 2014. https://doi.org/10.1021/am502358g
  21. J. M. Suh, Y. S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J. M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J. H. Lee, C. Y. Kang, H. W. Jang, "Synergetically Selective Toluene Sensing in Hematite-Decorated Nickel Oxide Nanocorals", Adv. Mater. Technol., Vol. 2, No. 3, p. 1600259, 2017. https://doi.org/10.1002/admt.201600259
  22. C. Wang, T. Wang, B. Wang, X. Zhou, X. Cheng, P. Sun, J. Zheng, and G. Lu, "Design of a-Fe2O3 nanorods functionalized tubular NiO nanostructure for discriminating toluene molecule", Sci. Rep., Vol. 6, p. 26432, 2016. https://doi.org/10.1038/srep26432