• Title/Summary/Keyword: interface adhesive layer

Search Result 96, Processing Time 0.044 seconds

EFFECTS OF DENTIN SURFACE WETNESS OR DESICCATION AFTER ACID ETCHING ON DENTIN BONDING (산부식후 상아질 표면의 습윤 또는 건조가 상아질 결합에 미치는 영향)

  • Yang, Won-Kyung;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.243-253
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate dentin bonding by two different dentin bonding systems(DBS) using acetone based primer or adhesive [All Bond 2(AB2), One Step(OS)] when they were applied by wet or dry bonding technique. Morphology of resin-dentin interface and hybrid layer thickness(HLT) were investigated using Confocal Laser Scanning Microscope(CLSM) and compared to shear bond strength(SBS). 72 extracted sound human molars were randomly divided into 4 groups of 18 teeth each - Group 1.(AW); AB2 by wet bonding. Group 2(AD); AB2 by dry bonding. Group 3.(OW); OS by wet bonding, Group 4.(OD); OS by dry bonding. In 6 teeth of each group, notch-shaped class V cavities(depth 2mm) were prepared on buccal and lingual surface at the cementoenamel juction(12 cavities per group). To obtain color contrast in CLSM observation, bonding resins of each DBS were mixed with rhodamine B and primer of AB2 was mixed with sodium fluorescein. Prepared teeth of each group were treated with AB2, OS, respectively according to the manufacturer's instructions except for dentin surface moisture treatment after acid etching. In group 1 and 3, after acid etching, excess water was removed with wet tissue(Kimwipes), leaving consistently shiny, visibly hydrated dentin surface. In group 2 and 4, dentin surface was dried for 10 seconds at 1 inch distance. The treated teeth were then packed with composite resin(${\AE}$litefil) and light-cured. 12 microscopic samples($60{\sim}80{\mu}m$ thickness) of each group were obtained after longitudinal section and grinding(Exakt cutting and grinding system). Morphological investigation of resin-dentin interface and HLT measurement using CLSM were done. For measurement of SBS, remaining 12 teeth of each group were flattened occlusally to remove all enamel and grinded to 500 grit SiC(Pedemet Specimen Preparation Equipment). After applying DBS on the exposed dentin surface, composite resin was applied in the shape of cylinder, which has 5mm diameter, 1.5mm thickness, and light cured. SBS was measured using Instron with a crosshead speed of 0.5mm/min. It was concluded as follows, 1. HLT of AW(mean: $2.59{\mu}m$) was thicker than any other group, and followed by AD, OW, OD in descending order(mean; 2.37, 2.28, $1.92{\mu}m$). Only OD had statistically significant differences(p<0.05) to AW and AD. 2. There were intimate contact of resin and dentin at the interface in wet bonding groups, but gaps or irregular interfaces were observed in dry bonding groups. 3. The length, diameter, density of resin tags were various even in the same group without significant differences between groups and lots of adhesive lateral branches were observed. 4. There were no statistically significant difference of SBS between AB2 and OS, but SBS of wet bonding groups were significantly higher(p<0.05) than dry bonding groups. 5. There were no consistent relationships between HLT and SBS.

  • PDF

A comparison of the shear bond strength between porcelain repair systems and fractured surface of porcelain-fused-to-metal restorations (도재파절 양상에 따른 수종의 도재 수복용 레진의 결합력에 관한 실험적 연구)

  • Choi, Jeung Won;Han, Dong Hoo;Jeong, Chang Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 1990
  • Although dental porcelain demonstrates lasting esthetic results, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. This study investigated the in vitro shear strength of three porcelain repair systems according to aspects of the porcelain fractures. The purpose of this study was to evaluate the shear bond strength of three porcelain repair systems(All-bond, Clearfil, Scotchprime) according to fractured surface of porcelain - fused - to - metal restorations. For this study specimens were divided into five groups : group 1 represented fracture occurred at body porcelain layer, group 2 represented fracture occurred at opaque porcelain layer, group 3 represented fracture including 1/3 of metal exposure, group 4 represented fracture including 2/3 of metal exposure, and group 5 represented all metal surface was exposed. Specimens were stored in double deionized water(24Hr, $37^{\circ}C$) and thermocycling was performed(24Hr, 1080cycles), and subjected to a shear force parallel to the repair resin and porcelain interface by use of an University Testing Machine. The results of this study were obtained as follows : 1. In group 1 and 2, bond strength was relatively high, and bond strength showing reducing tendency as exposure of metal was increased. 2. In group 1, bond strength was relatively high, and no significant differences in porcelain repair system. 3. In group 2, 3 and 4, All-bond and Clearfil provided significantly higher bond strength than scotchprime. 4. In group 5, bond strength was the lowest among all groups and especially in case if Scotchprime. 5. Cohesive failure was observed in group 1 and 2, adhesive failure was observed in group 5, and cohesive / adhesive failures were observed in group 3 and 4.

  • PDF

Preparation of Aminosiloxane-grafted Poly(imidesiloxane) Copolymer and its Morphology and Adhesive Properties in Film (아미노실록산이 그래프팅된 폴리(이미드실록산) 공중합체 제조와 필름 모폴로지 및 점착 특성 연구)

  • Lee, Ji Mok;Kwon, Eunjin;Lee, Sunyoung;Jung, Hyun Min
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.547-552
    • /
    • 2013
  • Polyimide (PI) containing carboxyl functional group was prepared and reacted with diaminosiloxane during high temperature film casting. The morphology of resulting film was observed by using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), which revealed that globular 100 nm-sized PI domains and continuous polysiloxane phase were formed. X-ray photoelectron spectroscopy (XPS) study indicated that air-film interface mainly consisted of polysiloxane blocks. Poly(imidesiloxane) thin layer was thermostable until $400^{\circ}C$ and its pressure- sensitive adhesive property was retained up to $300^{\circ}C$. The comparative experiments revealed that grafting between carboxyl groups of polyimide and aminosiloxane was crucial for formation of microdomain structure and pressure-sensitive adhesive property.

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method (경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석)

  • Yi, W.;Chung, N.Y.;Yu, Y.C.;Jeong, E.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes (팔라듐 합금 수소분리막의 내구성 향상)

  • Kim, Chang-Hyun;Lee, Jun-Hyung;Jo, Sung-Tae;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

New technique for repairing circular steel beams by FRP plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-190
    • /
    • 2022
  • In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

Bonding efficacy of cured or uncured dentin adhesives in indirect resin (간접 레진수복시 상아질 접착제의 중합 여부에 따른 결합 효능)

  • Jang, Ji-Hyun;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • Objectives: This study examined the effect of the uncured dentin adhesives on the bond interface between the resin inlay and dentin. Materials and Methods: Dentin surface was exposed in 24 extracted human molars and the teeth were assigned to indirect and direct resin restoration group. For indirect resin groups, exposed dentin surfaces were temporized with provisional resin. The provisional restoration was removed after 1 wk and the teeth were divided further into 4 groups which used dentin adhesives (OptiBond FL, Kerr; One-Step, Bisco) with or without light-curing, respectively (Group OB-C, OB-NC, OS-C and OS-NC). Pre-fabricated resin blocks were cemented on the entire surfaces with resin cement. For the direct resin restoration groups, the dentin surfaces were treated with dentin adhesives (Group OB-D and OS-D), followed by restoring composite resin. After 24 hr, the teeth were assigned to microtensile bond strength (${\mu}TBS$) and confocal laser scanning microscopy (CLSM), respectively. Results: The indirect resin restoration groups showed a lower ${\mu}TBS$ than the direct resin restoration groups. The ${\mu}TBS$ values of the light cured dentin adhesive groups were higher than those of the uncured dentin adhesive groups (p < 0.05). CLSM analysis of the light cured dentin adhesive groups revealed definite and homogenous hybrid layers. However, the uncured dentin adhesive groups showed uncertain or even no hybrid layer. Conclusions: Light-curing of the dentin adhesive prior to the application of the cementing material in luting a resin inlay to dentin resulted in definite, homogenous hybrid layer formation, which may improve the bond strength.

Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints (접착이음의 계면균열에 대한 파괴인성 및 평가방법)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.