• Title/Summary/Keyword: interaction matrix method

Search Result 186, Processing Time 0.024 seconds

A Statistical Thermodynamic Study on the Conformational Transition of Oligopeptide Multimer

  • Kim, Yong Gu;Park, Hyeong Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • The conformational transition of oligopeptide multimer,-(HPPHPPP)n-, is studied (H:hydrophobic amino acid, P:hydrophilic amino acid). The helix/coil transitions are detected in the multimer. The transition depends on the number of amino acid in the sequence, the concentration of the oligopeptide, and temperature which affects helix stability constant (${\xi}$) and hydrophobic interaction parameter (wj). In the thermodynamic equilibrium system jA${\rightarrow}$Aj (where A stands for oligopeptide monomer), Skolnick et al., explained helix/coil transition of dimer by the matrix method using Zimm-Bragg parameters ${\xi}$ and $\sigma$ (helix initiation constant). But the matrix method do not fully explain dangling H-bond effects which are important in oligopeptide systems. In this study we propose a general theory of conformational transitions of oligopeptides in which dimer, trimer, or higher multimer coexists. The partition of trimer is derived by using zipper model which account for dangling H-bond effects. The transitions of multimers which have cross-linked S-S bonds or long chains do not occur, because they keep always helical structures. The transitions due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

A Study on Behavior of Rectangular Liquid Storage Structures (직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구)

  • 박장호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

Image-based Visual Servoing Through Range and Feature Point Uncertainty Estimation of a Target for a Manipulator (목표물의 거리 및 특징점 불확실성 추정을 통한 매니퓰레이터의 영상기반 비주얼 서보잉)

  • Lee, Sanghyob;Jeong, Seongchan;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.403-410
    • /
    • 2016
  • This paper proposes a robust image-based visual servoing scheme using a nonlinear observer for a monocular eye-in-hand manipulator. The proposed control method is divided into a range estimation phase and a target-tracking phase. In the range estimation phase, the range from the camera to the target is estimated under the non-moving target condition to solve the uncertainty of an interaction matrix. Then, in the target-tracking phase, the feature point uncertainty caused by the unknown motion of the target is estimated and feature point errors converge sufficiently near to zero through compensation for the feature point uncertainty.

Earthquake Response Analysis considering Irregular Soil Layers (불규칙한 다층 물성을 가지는 지반의 지진 응답 해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.67-73
    • /
    • 2005
  • Precise analysis of soil-structure interaction requires a proper description of soil profile. However, such approach becomes generally nearly unpractical for soil exhibiting material discontinuity and complex geometry since meshes should match that material discontinuity line. To overcome these difficulties, a different numerical integration method is adopted in this paper, which enables to integrate easily over an element with material discontinuity without regenerating mesh fellowing the discontinuity line. As a result the mesh is highly structured, loading to very regular silliness matrix. The influence of the shape of soil profile on the response is examined and it is seen that the proposed soil-structure analysis method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump (전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구)

  • Choi, Bok-Lok;Park, Jin-Moo;Kim, Kwang-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

Analysis of Residual Organic Solvent in Environmentally-friendly Farming Materials with Headspace Method (Headspace 법을 사용한 유기농업자재 중 잔류 유기용매 분석)

  • Choi, Geun Hyoung;Kong, Seung-Heon;Park, Byung-Jun;Moon, Byeong-Cheol;Kim, Jin-Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.128-132
    • /
    • 2016
  • Volatile organic solvents are used to extract the bioactive materials from raw materials for environmentally-friendly farming materials (EFFM), but the solvent should not remain in EFFM for the safety reasons. Thus qualitative and quantitative analysis method for the solvents using Headspace-GC were evaluated. Water content depleted the detection ratio of hydrophilic solvents and disturbing the hydrophilic interaction with solvents by DMSO might be helped to increase the detection ratio (up to 715%). Surfactant concentration affected to the detection ratio (68.5-179.1%) while surfactant type was not deeply involved the solvent detection. On the other hand, matrix-matched calibration method was accepted the minimum requirements for the quantitative analysis of the solvents in EFFM.

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

MO Theoretical Studies on Diels-Alder Reactions of $\alpha$-Allenic Ketones$^*$

  • Han, Eun-Sook;Lee, Ik-choon;Chang Byung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.197-200
    • /
    • 1983
  • The Diels-Alder cycloaddition reactions between dienes and allenic ketones were studied theoretically using CNDO/2 method. It was found that the reaction is a neutral electron demand type with matrix element control and the reactivity, the regio- and stereo-selectivities can be correctly predicted based on interaction energies calculated with the 4-center FMO formalism.

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.