DOI QR코드

DOI QR Code

A Statistical Thermodynamic Study on the Conformational Transition of Oligopeptide Multimer


Abstract

The conformational transition of oligopeptide multimer,-(HPPHPPP)n-, is studied (H:hydrophobic amino acid, P:hydrophilic amino acid). The helix/coil transitions are detected in the multimer. The transition depends on the number of amino acid in the sequence, the concentration of the oligopeptide, and temperature which affects helix stability constant (${\xi}$) and hydrophobic interaction parameter (wj). In the thermodynamic equilibrium system jA${\rightarrow}$Aj (where A stands for oligopeptide monomer), Skolnick et al., explained helix/coil transition of dimer by the matrix method using Zimm-Bragg parameters ${\xi}$ and $\sigma$ (helix initiation constant). But the matrix method do not fully explain dangling H-bond effects which are important in oligopeptide systems. In this study we propose a general theory of conformational transitions of oligopeptides in which dimer, trimer, or higher multimer coexists. The partition of trimer is derived by using zipper model which account for dangling H-bond effects. The transitions of multimers which have cross-linked S-S bonds or long chains do not occur, because they keep always helical structures. The transitions due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA v.30 Pauling, L.;Corey, R. B.;Branson, H. R.
  2. Protein Data Bank #67
  3. Ann. Rev. Bioch. v.47 Chou, P. Y.;Fasman, G. D.
  4. FEBS Lett. v.64 Morisnaga, T.;Funatsu, G.;Funatsu, M.;Wittmann, H. G.
  5. FEBS Lett. v.69 Chen, R.;Ehrke, G.
  6. Science v.192 Clotz, I. M.;Klippenstein, G. L.;Hendrickson, M. A.
  7. Biochem. J. v.141 Robson, B.
  8. Biopolymers v.6 Venkatachalan, C. M.
  9. Proc. Natl. A cad. Sci. USA v.70 Beyreuther, K.;Adler, K.;Geisler, N.;Klemm, A.
  10. J. Chem. Phys. v.31 Zimm, B. H.;Bragg, J. K.
  11. J. Chem. Phys. v.34 Lifson, S.;Loig, A.
  12. Macromolecules v.16 Holtzer, M. E.;Holtzer, A.;Skolnick, J.
  13. Macromolecules v.17 Skolnick, J.
  14. Macromolecules v.17 Skolnick, J.
  15. Macromolecules v.18 Skolnick, J.
  16. Macromolecules v.18 Skolnick, J.;Holtzer, A.
  17. Macromolecules v.19 Skolnick, J.
  18. Science v.262 Habury, P. B.;Zhang, T.;Kim, P. S.;Alber, T.
  19. J. Amer. Chem. Sci. v.114 Fairman, R.;Spencer, J. A.;Degrado, W. F.
  20. Science v.250 O'Neil, K. T.;Degrado, W. F.
  21. Macromolecules v.15 Skolnick, J.;Holtzer, A.
  22. J. Amer. Chem. Sci. v.79 Cohen, C.;Szent-Gyorgyri, A. G.
  23. Biochemistry v.4 Holtzer, A.;Clark, R.;Lowey, S.
  24. Aust. J. Biol. Sci. v.29 Woods, E.
  25. Comp. Biochem. Physiolo. v.68B Crmmins, D.;Isom, L.;Holtzer, A.
  26. Biochemistry v.20 Wu, C. S.;Ikeda, K.;Yang, J. T.
  27. Biopolymers v.24 Mattice, W. L.
  28. J. Kor. Chemi. Sci. v.38 no.10 Kim, Y.;Pak, H.
  29. Statistical Mechanics Mayer, J.;Mayer, M.
  30. J. Chem. Phys. v.49 Lehmann, G. W.;Mctague, J. P.
  31. J. Phys. Chemi. v.87 Chou, K.-C.;Nemethy, G.;Scheraga, H.
  32. Biophys. J. v.45 Phillips, G.
  33. J. Kor. Chemi. Sci. Kim, Y.;Pak, H.
  34. J. Mol. Biol. v.21 Arnott, S.;Wonacott, A. J.
  35. Macromolecules v.5 Plater, K. E. B.;Annathanarayanan, V. S.;Andreatta, R. H.;Sheraga, H. A.
  36. Macromolecules v.6 Alter, J. E.;Andrenatta, R. H;Taylor, T.;Sheraga, H. A.
  37. Polym. Sci. Part C v.16 Allgra, G.
  38. Macromolecules v.14 Fredickson, R. A.;Chang, M. C.;Powers, S. P.;Sheraga, H. A.
  39. Biopoly mers v.30 Altmann, K. H.;Wojcik, J.;Vasqeuz, M.;Sheraga, H. A.
  40. Biopolymers v.16 Hill, D. J. T.;Cardinaux, F.;Sheraga, H. A.
  41. Macromolecules v.6 van Wart, R. E.;Taylor, G. T.;Sheraga, H. A.
  42. Ma cromolecules v.13 Nagy, J. A.;Powers, S. P.;Zweifel, B. O.;Sheraga, H. A.
  43. Macromolecules v.4 Annathanarayanan, V. S.;Andreatta, R. H.;Poland, D.;Sheraga, H. A.
  44. Macromolecules v.6 Hughes, L. J.;Andreatta, R. H.;Sheraga, H. A.
  45. Macromolecules v.11 Mecht, M. H.;Zweifel, B. O.;Sheraga, H. A.
  46. Biopolymers v.30 Wojcik, J.;Altmann, K. H.;Sheraga, H. A.
  47. Macromolecules v.9 Scheule, R. K.;Cardinaux, F.;Taylor, G. T.;Sheraga, H. A.
  48. Biopolymers v.16 Matheson, R. R.;Jr. Nemenoff, R. A.;Cardinaux, F.;Sheraga, H. A.
  49. Biopolymers v.21 Denton, J. B.;Powers, S. P.;Zweifel, B. O.;Sheraga, H. A.
  50. Macromolecules v.10 Kobayachi, Y.;Cardinaux, F.;Zweifel, B. O.;Sheraga, H. A.
  51. Macromolecules v.8 Maxfeld, F. R.;Alter, J. E.;Taylor, G. T.;Sheraga, H. A.
  52. Macromolecules v.10 Konishi, Y.;van Nispen, J. W.;Daveport, G. D.;Sheraga, H. A.
  53. Biopolymers v.6 Ingall, R. T.;Sheraga, H. A.;Lotan, V.;Berger, A.;Katachask i, E.
  54. Macromolecules v.17 Sueki, M.;Lee, S.;Powers, S. P.;Denton, J. B.;Konishi, Y.;Sheraga, H. A.
  55. C. R. Trav. Lab. Carsberg Ser. Chim. v.29 Schellman, J. A.
  56. Proc. Natl. Acad. Sci. USA v.83 Baldwin, R. L.
  57. Adv. Protein Chem. v.33 Privalov, P. L.
  58. Science v.247 Murphy, K. P.;Privalov, P. L.;Gill, S. J.
  59. Adv. Protein Chem. v.16 Kausmann, W.
  60. J. Chem. Phys. v.36 Nemthy, G.;Scheraga, H. A.
  61. Ann. Rev. Biomol. Struct. v.22 Rose, G. D.;Wolfenden, R.
  62. Biochemistry v.24 Dill, K. A.
  63. Biochemistry v.29 Dill, K. A.
  64. J. Chem. Phys. v.67 Pratt, L. R.;Chandler, D.
  65. Science v.259 Lovejoy, B.;Choe, S.;Cascio, D.;Mcrorie, D. K.;Degrado, W. F.;Einsenberg, D.
  66. J. Amer. Chem. Sci. v.114 Raleigh, D. P.;Degrado, W. F.
  67. J. Amer. Chem. Sci. v.115 Grove, A.;Mutter, M.;Riviver, J. E.;Montal, M.
  68. J. Phys. Chem. v.97 Hu, Y.;Chin, T. M.;Fleming, G. R.;Yang, N. C.