• Title/Summary/Keyword: intensity ratio

Search Result 2,128, Processing Time 0.026 seconds

Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading (멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수)

  • 이강용;김성호;박문복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method (경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정)

  • Lee, Kang-Yong;Kwak, Sung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

Investigation of surface pressures on CAARC tall building concerning effects of turbulence

  • Li, Yonggui;Yan, Jiahui;Chen, Xinzhong;Li, Qiusheng;Li, Yi
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • This paper presents an experimental investigation on the surface pressures on the CAARC standard tall building model concerning the effects of freestream turbulence. Two groups of incidence turbulence are generated in the wind tunnel experiment. The first group has an approximately constant turbulence intensity of 10.3% but different turbulence integral scale varying from 0.141 m to 0.599 m or from 0.93 to 5.88 in terms of scale ratio (turbulence integral scale to building dimension). The second group presents similar turbulence integral scale but different turbulence intensity ranging from 7.2% to 13.5%. The experimental results show that the mean pressure coefficients on about half of the axial length of the side faces near the leading edge slightly decrease as the turbulence integral scale ratio that is larger than 4.25 increases, but respond markedly to the changes in turbulence intensity. The root-mean-square (RMS) and peak pressure coefficients depend on both turbulence integral scale and intensity. The RMS pressure coefficients increase with turbulence integral scale and intensity. As the turbulence integral scale increases from 0.141 m to 0.599 m, the mean peak pressure coefficient increases by 7%, 20% and 32% at most on the windward, side faces and leeward of the building model, respectively. As the turbulence intensity increases from 7.2% to 13.5%, the mean value of peak pressure coefficient increases by 47%, 69% and 23% at most on windward, side faces and leeward, respectively. The values of cross-correlations of fluctuating pressures increase as the turbulence integral scale increases, but decrease as turbulence intensity increases in most cases.

A Study on Fatigue Crack Propagation Behavior with Pure-Ti Plate (순수 티타늄 판재의 피로균열 전파거동에 관한 연구)

  • 오세욱;김태형;김득진;임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.92-100
    • /
    • 1995
  • The effect of different anisotropy and stress ratio on fatigue crack propagation behavior was investigated under various stress ratio(R=-0.4, -0.2, 0.2, 0.2, 0.4) using pure titanium sheet used in aerospace, chemical and food industry. The rack closure behavior under constant load amplitude fatigue crack propagation test was examined. Fatigue crack propagation rate da/dN was estimated in terms of effective stress intensity factor range, $\Delta$K$_{eff}$, regardless of various stress ratio but was influenced by anisotropy. Also, it was found that the effect of anisotropy was considerably decreased but still not negligible when he da/dN was evaluated by a conventional parameter, $\Delta$$K_{eff}$/E and when the modified da/dN.$\sqrt{\varepsilon}_f$ was evaluated by $\Delta$$K_{eff}$/E. On the other hand, da/dN could be evaluated uniquely by effective new parameter, $\Delta$K$_{eff}$/$sigma_{ys}$, regardless of anisotropy, as int he following equation da/dN=C''[\frac{{\Delta}K_{eff}}{{\sigma}_{ys}}]^{n''}. And effective stress intensity factor range ratio, U was estimated by the following equation with respect to the ratio of reversed plastic zone size, $\Delta r_{p}$ to monotonic plastic zone size, $r_p$ regardless of stress ratio and anisotropy. U=-4.45$(\Delta r_{p}/r_{p})^{2}$+4.1$(\Delta r_{p}/r_{p})$+0.245_{p})$+0.245

  • PDF

Analysis of Crack Growth in the Stiffened Panels by using Finite Element Method (유한요소법을 이용한 보강판의 균열거동해석)

  • 이환우;전원석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.197-202
    • /
    • 2000
  • A simple numerical procedure is presented to determine the stress intensity factors for crack in a stiffened panel subjected to a uniaxial uniform stress normal to the crack. Two types of stiffened panels are analyzed by the finite element method for various values of crack lengths, stiffness ratios, and stiffener spacings. From the finite element solution, the stress intensity factors were determined by using hybrid extrapolation method. Results are presented in graphical forms for upper mentioned parameters.

  • PDF

Intensity Dependence of Mutually Pumped Phase Conjugator in Photorefractive Crystal (광굴절결정에서 인코히어런트한 두 빔에 의해 발생되는 위상공액파의 광세기 의존성)

  • 박서연;곽종훈;김천민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.41-46
    • /
    • 1992
  • Mutually pumped phase conjugator(MPPC) is experimentally investigated and analyzed in terms of fanning gratings of a photorefractive BaTiO$_3$ crystal. As considering the intensity-dependent absorption and coupling cofficients in photorefractive two wave mixing, the dependence of phase conjugate reflectivites on the incident angle, beam ratio, and total intensity in MPPC is analyzed.

  • PDF

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

The Study on Flame Structure and NOx Emissions by Swirl Numbers and Fuel-Air Mixing Length in a Dump Combustor Gas Turbine (모형 가스터빈 연소기에서의 스월수와 혼합길이에 따른 화염구조와 NOx배출에 관한 실험적 연구)

  • Choi, Do-Wook;Kim, Gyu-Bo;Jeon, Chung-Hwan;Song, Ju-Hun;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.849-857
    • /
    • 2009
  • The experimental study was performed to investigate the effects of partial premixing, varying the equivalence ratio, mixing degree, swirl intensity, mixing length on the characteristics of flame structure and NOx emission. Experiments were conducted in a dump combustor at 1 bar using methane as fuel. Inlet air temperature was 570K. OH chemiluminescence images were acquired with an ICCD camera. As a result of the experimental investigation of characteristics of flame and NOx emission in partial premixed combustor, we can conclude the results as below. With the increase of swirl number, The flame length decreases and the flame width increases and it helps flame stabilization. It means that lean flammability limit is extended. With the increase of mixing of fuel-air length ratio, Flame goes to be stabilized and NOx emission and $OH^{\ast}$ intensity decrease. Through the comparison of preceding results, It is possible that the exhausted NOx emission from a gas turbine combustor will be able to predict through the $OH^{\ast}$ intensity.

A Study on the Fatigue Crack Growth Characteristics of the Welded Part According to the Welding Method of Ship Structural Steel (선체구조용강의 용접방법에 따른 용접부의 피로균열전파특성 연구)

  • Park, Kyeong-Dong;Ki, Woo-Tae;Lee, Ju-Yeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.385-393
    • /
    • 2007
  • The strength evaluation of the most weakest junction part is required for the safety design of all structures. Most of all. in order to enhance the reliability and safety of the welding part. whose use is the highest, it is very important to establish the efficient structure manufacturing technology by studying and investigating the evaluation of fatigue strength in various environments. This study analyzed the relations of da/dN, and th according to the welding methods of SMAW, FCAW, and SAW. In the stage II. the value of stress intensity factor range was the highest in SMAW welding method of stress ration R=0.1, and appeared under the sequence of FCAW and SAW and as the completion section of stress intensity factor was low, threshold stress intensity factor was lowly formed in da/dN - The fatigue life of each welding method is sensitively worked in high stress ratio. judging from the fact that the width of life reduction increases in the high stress ratio zone compared to the width of life reduction in the low stress ratio zone. In the fatigue limit of welding methods before corrosion. the welding of SMAW and FCAW shows the same fatigue limit compared to Base metal, and SAW holds the lowest fatigue limit value.

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman;Babaghasabha, Vahid;Khadem, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1087-1097
    • /
    • 2015
  • In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.