References
- Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materials", Int. J. Fract., 104, 131-143. https://doi.org/10.1023/A:1007652711735
- ANSYS (2004), Theory Manual Version 9.0, Canonsburg, Pennsylvania, USA.
- Ayhan, A.O. (2007), "Stress intensity factor for three-dimensional cracks in functionally graded materials using enriched finite elements", Int. J. Solid. Struct., 44, 8579-8599. https://doi.org/10.1016/j.ijsolstr.2007.06.022
- Barsoum, R. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-37 https://doi.org/10.1002/nme.1620100103
- Chen, J., Wu, L. and Du, S. (2000), "A modified J integral for functionally graded materials", Mech. Res. Commun., 27(3), 301-306. https://doi.org/10.1016/S0093-6413(00)00096-3
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098
- Dolbow, J.E. and Gosz, M. (2002), "On the computation of mixed mode stress intensity factors in functionally graded materials", Int. J. Solid. Struct., 39, 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2
- Eischen, J.W. (1987), "Fracture of nonhomogeneous materials", Int. J. Fract., 34, 3-22.
- Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J. Appl. Mech., 64, 449-456. https://doi.org/10.1115/1.2788914
- Ghannad, M., Zamani Nejad, M., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2008), "Heat conduction and heat wave propagation in functionally graded thick hollow cylinder base on coupled thermo elasticity without energy dissipation", J. Heat Mass Tran., 44(12), 1477-84. https://doi.org/10.1007/s00231-008-0381-9
- Jin, Z.H. and Noda, N. (1994), "Crack-tip singular fields in nonhomogeneous materials", J. Appl. Mech., 61, 738-740. https://doi.org/10.1115/1.2901529
- Jin, Z.H. and Batra, R.C. (1996), "Some basic fracture mechanics concepts in functionally graded materials", J. Mech. Phys. Solid., 44, 1221-1235. https://doi.org/10.1016/0022-5096(96)00041-5
- Kheirikhah, M.M. and Khalili, S.M.R. (2011), "Fracture analysis of semi-elliptical cracks at the interface of two functionally gradient materials using 3D finite element method", J. Mater. Des. Appl., 225, 103-110.
- Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-35. https://doi.org/10.1002/nme.364
- Kim, J.H. and Paulino, G.H. (2002), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", J. Eng. Fract. Mech., 69, 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Book Eng., 28 (1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Li, C. and Zou, Z. (1998), "Internally circumferentially cracked cylinders with functionally graded material properties", Int. J. Press. Ves. Pip., 75, 499-507. https://doi.org/10.1016/S0308-0161(98)00053-2
- Li, C., Zou, Z. and Duan, Z. (1999), "Stress intensity factors for functionally graded solid cylinders", J. Eng. Fract. Mech., 63, 735-749. https://doi.org/10.1016/S0013-7944(99)00045-4
- Li, Y., Zhang, H. and Tan, W. (2006), "Fracture analysis of functionally gradient weak/micro discontinuous interface with finite element method", J. Comput. Mater. Sci., 38, 454-458. https://doi.org/10.1016/j.commatsci.2006.04.005
- Li, X.F. and Peng, X.L. (2009), "A pressurized functionally graded hollow cylinder with arbitrarily varying material properties", J. Elast., 96, 81-95. https://doi.org/10.1007/s10659-009-9199-z
- Liew, K.M., Kitipornchai, S. and Zhang, X.Z. (2003), "Analysis of the thermal stress behavior of functionally graded hollow circular cylinders", Int. J. Solid. Struct., 40, 2355-2380. https://doi.org/10.1016/S0020-7683(03)00061-1
- Marur, P.R. and Tippur, H.V. (2000), "Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient", Int. J. Solid. Struct., 37, 53-70.
- Newman, J.C. and Raju, I.S. (1980), "Stress intensity factor for internal surface cracks in cylindrical pressure vessels", J. Press. Ves. Tech., 102, 342-346. https://doi.org/10.1115/1.3263343
- Newman, J.C. and Raju, I.S. (1982), "Stress intensity factor for internal and external surface cracks in cylindrical pressure vessels", J. Press. Ves. Tech., 104, 293-298. https://doi.org/10.1115/1.3264220
- Ozturk, M. and Erdogan, F. (1997), "Mode I crack problem in an inhomogeneous orthotropic medium", Int. J. Eng. Sci., 35(9), 869-83. https://doi.org/10.1016/S0020-7225(97)80005-5
- Ozturk, M. and Erdogan, F. (1999), "The mixed mode crack problem in an inhomogeneous orthotropic medium", Int. J. Fract., 98, 243-61. https://doi.org/10.1023/A:1018352203721
- Pan, E. and Roy, A.K. (2006), "A simple plane-strain solution for functionally graded multilayered isotropic cylinders", J. Struct. Eng. Mech., 24(6), 727-740. https://doi.org/10.12989/sem.2006.24.6.727
- Parameswaran, V. and Shukla, A. (2002), "Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials", J. Appl. Mech., 69, 240-243. https://doi.org/10.1115/1.1459072
- Shahani, A.R. and Kheirikhah, M.M. (2007), "Stress intensity factor calculation of steel lined hoop wrapped cylinders with internal semi-elliptical circumferential crack", J. Eng. Fract. Mech., 74, 2004-2013. https://doi.org/10.1016/j.engfracmech.2006.10.014
- Tutunc, U. (2007), "Stresses in thick-walled FGM cylinders with exponentially-varying properties", J. Eng. Struct., 29, 2032-2035. https://doi.org/10.1016/j.engstruct.2006.12.003
- Walters, M.C., Paulino, G.H. and Dodds, R.H. (2004), "Stress intensity factors for surface cracks in functionally graded materials under mode-I thermo mechanical loading", Int. J. Solid. Struct., 41, 1081-1118. https://doi.org/10.1016/j.ijsolstr.2003.09.050
- Walters, M.C., Paulino, G.H. and Dodds, R.H. (2006), "Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids", J. Eng. Mech., 132, 1-15. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(1)
- Yildirim, B., Dag, S. and Erdogan, F. (2005), "Three dimensional fracture analysis of FGM coatings under thermo mechanical loading", Int. J. Fract., 132, 369-395.
- Zimmerman R.W. and Lutz, M.P. (1999), "Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder", J. Therm. Stress, 22, 177-188. https://doi.org/10.1080/014957399280959
Cited by
- Thermo-Mechanical Buckling of CFRP Cylindrical Shells with FGPM Coating pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500160
- Failure Analyses of Propagation of Cracks in Repaired Pipe Under Internal Pressure vol.19, pp.1, 2019, https://doi.org/10.1007/s11668-019-00592-3
- Contact problem for a stringer plate weakened by a periodic system of variable width slots vol.62, pp.6, 2015, https://doi.org/10.12989/sem.2017.62.6.719
- Mode III SIFs for interface cracks in an FGM coating-substrate system vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.071