• Title/Summary/Keyword: intelligent diagnosis

Search Result 393, Processing Time 0.02 seconds

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.

An Intelligent Land Vehicle Information System for CDMA-based Wireless Remote Diagnosis and Management (CDMA기반 무선 원격진단 및 관리를 위한 지능형 차량 정보 시스템)

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.2
    • /
    • pp.91-101
    • /
    • 2006
  • Researches on services of vehicles have been mainly focused on how to provide useful information and entertainment for an in-vehicle driver. However, the needs are appreciably increased for more advanced services that help drivers to check and manage their vehicles conveniently, without requiring drivers to attach to their vehicles. It is a sort of ubiquitous computing, providing an intelligent interactive services for human at any time and any where. In this paper, we present an intelligent vehicle information system to enable a driver to remotely diagnose and control a vehicle via CDMA communication network connected to the Internet. The system improves mobility for diagnosis and control of vehicle by implementing a cut and call back mechanism, which allows the vehicle terminal to have access to the information server on the Internet via CDMA call. No matter where the driver is, he can obtain the remote diagnosis and control services on the web browser without any additional application installation. Design methodology is introduced and evaluation results are analyzed for the CDMA-based intelligent vehicle information system. The experimental results show that the response time of the vehicle terminal to a web client request is 10.302 seconds at the beginning and 646.44ms thereafter. The average response time of CAN sensor node to a vehicle terminal request is 6.669ms.

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Model of Remote Service and Intelligent Fault Diagnosis for CNC Machine Tool (공작기계의 지능형 고장진단과 원격 서비스 모델)

  • Kim, Sun-Ho;Kim, Dong-Hoon;Han, Gi-Sang;Kim, Chan-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.168-178
    • /
    • 2002
  • The CNC machine toots has two kinds of fault. One is the fault due to degraded parts and the other is the fault due to operation disability. The phenomena of degradation is predictable but the operational fault is unpredictable because it occurred without any warning. The major faults of CNC machine tool are operational faults which are charged over 70%. This paper describes the model of remote service and the intelligent fault diagnosis system to diagnosis operational faults of CNC machine tools. To generalize fault diagnosis, two diagnosis models such as SF(Switching Function) and SSF(Step Switching Function) are proposed. The SF is static model and SSF is dynamic model for expression of fault. The SF and SSF model can be generated using SFG(Switching Function Generator) which is developed in this research. The three major operational faults such as emergency stop error, cycle start disability and machine ready disability are applied to experiment of fault modeling. To remote service of faults fur CNC machine tool, the web server and client system based internet are proposed as the suitable environment. The developed two technologies are implemented with the internal function of open architecture controller. The implemental results for two technologies are presented to validate the proposed scheme.

A Study on fault diagnosis of DC transmission line using FPGA (FPGA를 활용한 DC계통 고장진단에 관한 연구)

  • Tae-Hun Kim;Jun-Soo Che;Seung-Yun Lee;Byeong-Hyeon An;Jae-Deok Park;Tae-Sik Park
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.601-609
    • /
    • 2023
  • In this paper, we propose an artificial intelligence-based high-speed fault diagnosis method using an FPGA in the event of a ground fault in a DC system. When applying artificial intelligence algorithms to fault diagnosis, a substantial amount of computation and real-time data processing are required. By employing an FPGA with AI-based high-speed fault diagnosis, the DC breaker can operate more rapidly, thereby reducing the breaking capacity of the DC breaker. therefore, in this paper, an intelligent high-speed diagnosis algorithm was implemented by collecting fault data through fault simulation of a DC system using Matlab/Simulink. Subsequently, the proposed intelligent high-speed fault diagnosis algorithm was applied to the FPGA, and performance verification was conducted.

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

A Fuzzy Diagnosis System for Detecting Computer Viruses (컴퓨터 바이러스 탐지를 위한 퍼지 진단시스템)

  • Lee, Hyeon-Suk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.210-212
    • /
    • 2007
  • 본 논문에서는 컴퓨터 바이러스 정보 구축과 탐색에 학습기능을 도입함으로 새로 발생하는 바이러스를 찾아내어 대처할 수 있도록 설계된 퍼지 진단 시스템 FDS를 제안한다. FDS에서는 FCM 알고리즘을 사용하여 알려진 정보의 클러스터를 형성하고 이에 전문가의 지식을 포함하는 지식베이스를 구축한다. 진단을 위한 컴퓨터 파일에 대하여 그 파일의 결정 상태를 확인하고 이미 저장된 지식베이스를 바탕으로 바이러스 침입에 대한 정보를 보고하도록 설계되어있다. 이 시스템은 이미 알려진 테스트 데이터와 이전에 알려지지 않은 새로운 테스트 데이터를 실험데이터로 준비하여 그 성능을 테스트 한다. 제안된 시스템이 알려지지 않은 컴퓨터 바이러스의 경우도 효과적으로 진단할 수 있는 타당성을 보이고 있다.

  • PDF