DOI QR코드

DOI QR Code

A Study on fault diagnosis of DC transmission line using FPGA

FPGA를 활용한 DC계통 고장진단에 관한 연구

  • Tae-Hun Kim (Dept. of Electrical Engineering, Mokpo National University) ;
  • Jun-Soo Che (Dept. of Electrical Engineering, Mokpo National University) ;
  • Seung-Yun Lee (Dept. of Electrical Engineering, Mokpo National University) ;
  • Byeong-Hyeon An (Dept. of Electrical Engineering, Mokpo National University) ;
  • Jae-Deok Park (Dept. of Electrical Engineering, Mokpo National University) ;
  • Tae-Sik Park (Dept. of Electrical Engineering, Mokpo National University)
  • Received : 2023.12.13
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

In this paper, we propose an artificial intelligence-based high-speed fault diagnosis method using an FPGA in the event of a ground fault in a DC system. When applying artificial intelligence algorithms to fault diagnosis, a substantial amount of computation and real-time data processing are required. By employing an FPGA with AI-based high-speed fault diagnosis, the DC breaker can operate more rapidly, thereby reducing the breaking capacity of the DC breaker. therefore, in this paper, an intelligent high-speed diagnosis algorithm was implemented by collecting fault data through fault simulation of a DC system using Matlab/Simulink. Subsequently, the proposed intelligent high-speed fault diagnosis algorithm was applied to the FPGA, and performance verification was conducted.

본 논문에서는 DC 계통의 지락고장시 고속 고장진단을 위해 FPGA를 이용한 인공지능기반 고장진단 방법을 제안한다. 인공지능 알고리즘을 고장진단에 적용시 많은 연산량과 대용량의 실시간 데이터 처리가 요구된다. 또한 DC 계통에서의 고장 및 사고는 고장 전류의 빠른 상승률로 인하여 DC 차단기가 고속 차단능력이 필요하다. 인공지능기반 고속 고장진단이 가능한 FPGA를 사용하여 DC 차단기가 더 빠르게 동작함으로써, DC 차단기의 차단용량을 줄일 수 있다. 따라서 본 논문에서는 Matlab Simulink를 이용하여 DC계통의 고장 모의를 통해 고장데이터를 수집하여 지능형 고속 진단 알고리즘 구현하였으며, FPGA에 지능형 고속고장 진단 알고리즘을 적용 및 성능검증을 하였다.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy(RJS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE) (2021RIS-002) This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.NRF-2022R1A2C1013445).

References

  1. Smeets, Rene PP, and Nadew A. Belda. "High-voltage direct current fault current interruption: A technology review." High Voltage 6.2 (2021): 171-192. DOI: 10.1049/hve2.12063
  2. Leterme, W., Jahn, I., Ruffing, P., et al.: "Designing for high-voltage DC protection," IEEE Power Energy Mag. 17, 73-81 (2019) DOI: 10.1109/MPE.2019.2897188
  3. Spoor, Darren, and Jian Guo Zhu. "Improved single-ended traveling-wave fault-location algorithm based on experience with conventional substation transducers." IEEE Transactions on Power Delivery 21.3 (2006): 1714-1720. DOI: 10.1109/TPWRD.2006.878091
  4. He, Zhengyou, et al. "Improved fault-location system for railway distribution system using superimposed signal," IEEE transactions on power delivery 25.3 (2010): 1899-1911. DOI: 10.1109/TPWRD.2010.2041372
  5. Saleh, Khaled A., Ali Hooshyar, and Ehab F. El-Saadany. "Hybrid passive-overcurrent relay for detection of faults in low-voltage DC grids." IEEE Transactions on smart grid 8.3 (2015): 1129-1138. DOI: 10.1109/TSG.2015.2477482
  6. Gilany, Mahmoud, Ahmed Al-Kandari, and Bahaa Hassan. "ANN based technique for enhancement of distance relay performance against open-conductor in HV transmission lines," 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE). Vol.5. IEEE, 2010. DOI: 10.1109/ICCAE.2010.5451527
  7. Rangade, A.N.; Sharma, R. ANN Based Open Conductor Fault Detector for Protection of Two Parallel Circuit Transmission Line. Int. Res. J. Eng. Technol. (IRJET) 2019, 6, 87-92.
  8. Che, Junsoo, et al. "Prevention of Wildfires Using an AI-Based Open Conductor Fault Detection Method on Overhead Line." Energies 16.5 (2023): 2366. DOI: 10.3390/en16052366
  9. Che, Junsoo, et al. "AI-based Fault Detection Algorithm Using Wavelet Transformation in DC System," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2023, 37(1):33-44. https://doi.org/10.5207/JIEIE.2023.37.1.033
  10. Meghwani, A., S. C. Srivastava, and S. Chakrabarti. "A non-unit protection scheme for DC microgrid based on local measurements," IEEE Transactions on Power Delivery 32.1 (2016): 172-181. DOI: 10.1109/TPWRD.2016.2555844
  11. Yeap, Yew Ming, et al. "Time-and frequency-domain fault detection in a VSC-interfaced experimental DC test system," IEEE Transactions on Industrial Informatics 14.10 (2018): 4353-4364. DOI: 10.1109/TII.2018.2796068
  12. Mohanty, Rabindra, and Ashok Kumar Pradhan. "Protection of smart DC microgrid with ring configuration using parameter estimation approach." IEEE Transactions on Smart Grid 9.6 (2017): 6328-6337. DOI: 10.1109/TSG.2017.2708743