• Title/Summary/Keyword: intelligent control function

Search Result 482, Processing Time 0.024 seconds

Co-Evolution of Fuzzy Rules and Membership Functions

  • Jun, Hyo-Byung;Joung, Chi-Sun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.601-606
    • /
    • 1998
  • In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. Futhermore proper fuzzy partitioning is not deterministic ad there is no unique solution. So we propose a co-evolutionary method finding optimal fuzzy rules and proper fuzzy membership functions at the same time. Predator-Prey co-evolution and symbiotic co-evolution algorithms, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. Our algorithm is that after constructing two population groups made up of rule base and membership function, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the propose method to a path planning problem of autonomous mobile robots when moving objects applying the proposed method to a pa h planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Mobile Terminal-Based User Interface for Intelligent Robots (휴대용 단말기 기반의 재능 로봇 사용자 인터페이스)

  • Kim Gi-Oh;Xuan Pham Dai;Park Ji-Hwan;Hong Soon-Hyuk;Jeon Jae-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.179-186
    • /
    • 2006
  • A user interface that connects a user to intelligent robots needs to be designed for executing them efficiently. In this paper, it is analyzed how to organize a mobile terminal based user interface according to the function and level of autonomy of intelligent robots and the user interface of PDA (Personal Digital Assistant) and smart phone is developed for controlling intelligent robots remotely. In the image-based user interface, a user can see the motion of a robot directly and control the robot. In the map-based interface, the quantity of transmission information is reduced and therefore a user can control the robot with a small delay of transmission time.

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

On the Full Stand Modeling and Tension Control for the Hot Strip Finishing Mill with PID Structure

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1062-1073
    • /
    • 2004
  • We describe a looper controller design for a hot strip finishing mill in steel plants. The main function of the looper system is to balance the mass flow of the strip by accumulating material in the middle of the stands. Another function is to control the strip tension which influences the width of the strip. To ensure strip quality, it is very important to control the tension of the hot strip finishing mill. However, because there is a mutual interaction between the looper angle and the strip tension, it is difficult to control the looper system. Previous researches examined only the operation of a single stand. But it is not sufficient to examine the operation and effect of whole stands because the operation is wholly interdependent. In this paper, we present a full model of the hot strip finishing mill in order to more effectively control strip tension. We propose several control methods for the full-stand hot strip finishing mill, denoted as conventional PI, PI with cross gain, and coefficient diagram method (CDM) PID control. In the real plants, there are some problems by using higher order controllers such as LQ, LQG and H$\_$$\infty$/. By comparison, the PID controller is very simple and easy to apply to all real plants. To that end, we present our findings on PID controls and their potential use in the hot strip finishing mill.

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

  • Yu, Sung-Hun;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.

UCT/AGV Design and Implementation using steering function in automizing port system (조향 함수를 고려한 UCT/AGV 설계 및 구현)

  • 윤경식;이동훈;강진구;이권순;이장명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.47-56
    • /
    • 2000
  • In this study, as the preliminary step for developing an unmanned vehicle to deliver a container-box, we designed and implemented Automatic Guided Vehicle(AGV) Simulator for the purpose of Port Facilities Automation. It is preferable to research the intelligent AGV for delivery all day long. For complementing AGV simulator driving, we used multiple-sensor systems with vision, ultrasonic, IR and adapted the high-speed wireless LAN that satisfies the IEEE 802.11 Standard for bi-directional communication between main processor in AGV and Host computer. Here, we mounted on bottom frame in AGV Pentium-III processor, which combine and compute the information from each sensor system and control the AGV driving, and used the 80C196KC micro-controller to control the actuating and steering motors.

  • PDF

Design of a Time-delay Compensator Using Neural Network In a Tele-operation System (원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계)

  • Choi, Ho-Jin;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.

UCT/AGV Design and Implementation Using Steering Function in Automizing Port System (조향 함수를 고려한 UCT/AGV 설계 및 구현)

  • 윤경식;이동훈;강진구;이권순;이장명
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.199-207
    • /
    • 2000
  • In this study, as the preliminary step for developing an unmanned vehicle to deliver a container-box, we designed and implemented Automatic Guided Vehicle(AGV) Simulator for the purpose of Port Facilities Automation. It is preferable to research the intelligent AGV for delivery all day long. For complementing AGV simulator driving, we used multiple-sensor systems with vision, ultrasonic, IR and adapted the high-speed wireless LAN that satisfies the IEEE 802.11 Standard for bi-directional communication between main processor in AGV and Host computer. Here, we mounted on bottom frame in AGV Pentium-III processor, which combine and compute the information from each sensor system and control the AGV driving, and used the 80C196KC micro-controller to control the actuating and steering motors.

  • PDF

Power system protection IED design using an embedded processor (임베디드 프로세서를 이용한 계통 보호 IED 설계)

  • Yoon, Ki-Don;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.711-713
    • /
    • 2004
  • In the past time, the protection relay did only a protection function. Currently, its upgraded device i.e. IED(Intelligent Electric Device) has been designed to protect, control, and monitor the whole power system automatically. Also the device is desired to successfully measure important elements of the power system. This paper considers design method of a digital protection IED with a function of measuring various elements and a communication function. The protection IED is composed of the specific function modules that are signal process module, communication module, input/output module and main control module. A signal process module use a DSP processor for analysis of input signal. Main control module use a embedded processor, Xscale, that has an ARM Core. The communication protocol uses IEC61850 protocol that becomes standard in the future. The protection IED is able to process mass information with high-performance processor. As each function module is designed individually, the reliability of the device can be enhanced.

  • PDF