• 제목/요약/키워드: integrated gate driver

검색결과 49건 처리시간 0.026초

Design of Integrated a-Si:H Gate Driver Circuit with Low Noise for Mobile TFT-LCD

  • Lee, Yong-Hui;Park, Yong-Ju;Kwag, Jin-Oh;Kim, Hyung-Guel;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.822-824
    • /
    • 2007
  • This paper investigated a gate driver circuit with amorphous silicon for mobile TFT-LCD. In the conventional circuit, the fluctuation of the off-state voltage causes the fluctuation of gate line voltages in the panel and then image quality becomes worse. Newly designed gate driver circuit with dynamic switching inverter and carry out signal reduce the fluctuation of the off-state voltage because dynamic switching inverter is holding the off-state voltage and the delay of carry signal is reduced. The simulation results show that the proposed a-Si:H gate driver has low noise and high stability compared with the conventional one.

  • PDF

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Driving Methods of LCD-TV Using a-Si:H TFT Integrated Gate Drivers

  • Lee, Chang-Soo;Lee, Min-Cheol;Lee, Yong-Soon;Bae, Yu-Han;Kim, Young-Su;Moon, Seung-Hwan;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.280-283
    • /
    • 2008
  • LCD-TV applications were successfully implemented using integrated gate drivers. Integrated gate drivers have been implemented on a HD panel for 60Hz operation and on a FHD panel for 120Hz operation. It is found that the integrated gate driver reduces the flicker of a panel.

  • PDF

A novel integrated a-Si:H gate driver

  • Lee, Jung-Woo;Hong, Hyun-Seok;Lee, Eung-Sang;Lee, Jung-Young;Yi, Jun-Shin;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1176-1178
    • /
    • 2007
  • A novel integrated a-Si:H gate driver with high reliability has been designed and simulated. Since the a-Si:H TFT is easily degraded by gate bias stress, we should optimize the circuit considering the threshold voltage shift. The conventional circuit shows voltage drop at the input stage by threshold voltage of the TFT, however, the proposed circuit dose not shows voltage drop and keeps constant regardless of threshold voltage shift of the TFT.

  • PDF

14.1" XGA AMLCD with Integrated Black Data Insertion as an application of a-Si TFT Gate Driver

  • Choi, Woo-Seok;Kim, Hae-Yeol;Cho, Hyung-Nyuck;Ryu, Chang-Il;Yoon, Soo-Young;Jang, Yong-Ho;Park, Kwon-Shik;Kim, Binn;Choi, Seung-Chan;Cho, Nam-Wook;Moon, Tae-Woong;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.583-586
    • /
    • 2009
  • A 14.1" XGA (1024${\times}$768) LCD panel with Integrated Black Data Insertion (IBDI) has been world first developed successfully based on the integrated amorphous Silicon TFT gate driver which we previously introduced. The notable features compared with the conventional integrated a-Si TFT gate driver circuit are that the circuit consists of Dual buffer, Carry buffer structure, and Q-node cross charging for stable signal scanning characteristic and prevention of coupling between signal lines.

  • PDF

유기 박막 트랜지스터를 이용한 유연한 디스플레이의 게이트 드라이버용 로직 게이트 구현 (Implementation of Logic Gates Using Organic Thin Film Transistor for Gate Driver of Flexible Organic Light-Emitting Diode Displays)

  • 조승일;미즈카미 마코토
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.87-96
    • /
    • 2019
  • 유기 박막 트랜지스터 (OTFT) 백플레인을 이용한 유연한 유기 발광 다이오드 (OLED) 디스플레이가 연구되고 있다. OLED 디스플레이의 구동을 위해서 게이트 드라이버가 필요하다. 저온, 저비용 및 대 면적 인쇄 프로세스를 사용하는 디스플레이 패널의 내장형 게이트 드라이버는 제조비용을 줄이고 모듈 구조를 단순화한다. 이 논문에서는 유연한 OLED 디스플레이 패널의 내장형 게이트 드라이버 제작을 위하여 OTFT를 사용한 의사 CMOS (pseudo complementary metal oxide semiconductor) 로직 게이트를 구현한다. 잉크젯 인쇄형 OTFT 및 디스플레이와 동일한 프로세스를 사용하여 유연한 플라스틱 기판 상에 의사 CMOS 로직 게이트가 설계 및 제작되며, 논리 게이트의 동작은 측정 실험에 의해 확인된다. 최대 1 kHz의 입력 신호 주파수에서 의사 CMOS 인버터의 동작 결과를 통하여 내장형 게이트 드라이버의 구현 가능성을 확인하였다.

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

ASG(Amorphous Silicon TFT Gate driver circuit)Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • Journal of Information Display
    • /
    • 제5권2호
    • /
    • pp.1-5
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA ($240{\times}320$) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

Data Line Sharing in TFT-LCD with the Integrated Gate Driver

  • Park, Kwon-Shik;Cho, Nam-Wook;Chun, Min-Doo;Moon, Tae-Woong;Jang, Yong-Ho;Kim, Hea-Yeol;Kim, Binn;Choi, Seung-Chan;Cho, Hyung-Nyuck;Ryoo, Chang-Il;Yoon, Soo-Young;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1009-1012
    • /
    • 2008
  • We have succeeded in producing the world $1^{st}$ TFT LCD panel adapting the data line sharing method. In the data line sharing structure, two neighboring pixels share one data line. We also adapted time shared data driving with a-Si TFT based circuit integration technology of LG Display's own. By using these technologies, we can reduce the number of source driver ICs by half, compared to that of the existing gate driver integrated TFT LCD panel.

  • PDF