• Title/Summary/Keyword: integrated electrodes

Search Result 125, Processing Time 0.027 seconds

Development of SiGe Heterostructure Epitaxial Growth and Device Fabrication Technology using Reduced Pressure Chemical Vapor Deposition (저압화학증착을 이용한 실리콘-게르마늄 이종접합구조의 에피성장과 소자제작 기술 개발)

  • Shim, K.H;Kim, S.H;Song, Y.J;Lee, N.E;Lim, J.W;Kang, J.Y
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • Reduced pressure chemical vapor deposition technology has been used to study SiGe heterostructure epitaxy and device issues, including SiGe relaxed buffers, proper control of Ge component and crystalline defects, two dimensional delta doping, and their influence on electrical properties of devices. From experiments, 2D profiles of B and P presented FWHM of 5 nm and 20 nm, respectively, and doses in 5×10/sup 11/ ∼ 3×10/sup 14/ ㎝/sup -2/ range. The results could be employed to fabricate SiGe/Si heterostructure field effect transistors with both Schottky contact and MOS structure for gate electrodes. I-V characteristics of 2D P-doped HFETs revealed normal behavior except the detrimental effect of crystalline defects created at SiGe/Si interfaces due to stress relaxation. On the contrary, sharp B-doping technology resulted in significant improvement in DC performance by 20-30 % in transconductance and short channel effect of SiGe HMOS. High peak concentration and mobility in 2D-doped SiGe heterostructures accompanied by remarkable improvements of electrical property illustrate feasible use for nano-sale FETs and integrated circuits for radio frequency wireless communication in particular.

Functional Linkage Analysis of Sit-to-Stand With Changes of Pelvic Tilting (골반 자세 변화에 따른 일어서기의 기능적 연결분석의 접근)

  • Choi, Jong-Duk;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Jong-Man;Kim, Jin-Kyung
    • Physical Therapy Korea
    • /
    • v.10 no.2
    • /
    • pp.11-22
    • /
    • 2003
  • The purpose of this study was to analyze the effects of three different pelvic tilts on a sit-to-stand (STS) and to suggest a new assessment approach based on biomechanical analysis. The three difrent pelvic tilts were: (1) comfortable pelvic tilt sit-to-stand (CPT STS), (2) posterior pelvic tilt sit-to-stand (PPT STS) and (3) anterior pelvic tilt sit-to-stand (APT STS). To determine the onset time of muscle contraction surface electrodes were applied to the rectus femoris muscle (RF), vastus lateralis muscle (VL), biceps femoris muscle (BF), tibialis anterior muscle (TA), gastrocnemius muscle (GCM), and soleus muscle (SOL). The ICC was used for functional linkage analysis. The findings of this study were as follows. First, significant differences were found in kinematic variables and in muscle activation pattern among the three activities. Second, the results of functional integrated analysis revealed that recruited muscle activation patterns changed when the thigh-off was viewed as a reference point. Third, there were independent functional units between the thigh-off and the VL and between the thigh-off and the RF in the functional linkage analysis. The VL and RF acted as prime mover muscles, and more postural adjustment muscle recruitment was required as the demand of postural muscle control increased (PPT STS, APT STS, and CPT STS in order). In conclusion, the findings of this study suggest the following evaluative and therapeutic approach for STS activity. APT STS can be introduced for movement efficiency and functional advantage when abnormal STS is treated. However, excessive APT would change the muscle activation patterns of BF and SOL and require additional postural muscle control to cause abnormal control patterns.

  • PDF

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides (폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기)

  • Kim, Kyoungrae;Moon, Hyunseung;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.174-180
    • /
    • 2016
  • A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

A Study on the Out-of-Band Rejection Improvement of TFBAR Ladder Filter using On-Wafer Inductors (기판상의 인덕터를 이용한 박막 공진 여파기의 대역 외 저지특성 개선 연구)

  • 김종수;구명권;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.284-290
    • /
    • 2004
  • In this paper, two types of thin nim bulk acoustic resonator(TFBAR) ladder filters are desisted and fabricated to analyze the effects of on-wafer inductor integration. To suppress the overmode phenomenon a 1 $\mu\textrm{m}$ thick air-gap is fabricated under the TFBAR and aluminum nitride is used for piezoelectric material, while platinum is employed for the top and bottom electrodes. The Tx filter in a duplexer, which usually has a steeper skirt characteristics o the right side of the passband, is designed with four serial and two shunt resonators, namely, a 4/2 stage. Similarly, the Rx filter is devised with a 3/4 stage to create a mirrored image of the Tx filter passband characteristics. Fabricated on-wafer spiral inductors with underpass reveals the Q factor of 5~9 at 2 ㎓. Inductor integrated filters have approximately 10 to 12 ㏈ out-of-band rejection improvement, when compared to the original filters.

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

Effects of Forefoot Rocker Shoes with Metatarsal Bar on Lower Extremity Muscle Activity and Plantar Pressure Distribution (중족골 바 형태의 전족부 라커 신발이 하지 근 활성도 및 족저압력 분포에 미치는 영향)

  • Park, In-Sik;Jung, Ji-Yong;Jeon, Keun-Hwan;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of forefoot rocker shoes equipped with a metatarsal bar on lower extremity muscle activity and plantar pressure distribution. Ten healthy women in the age of twenties were participated in this study as the subjects. All subjects walked on a treadmill(Gait Trainer, BIODEX, USA) wearing normal shoes and metatarsal bar shoes, during which the plantar pressure distribution and muscle activity were measured. Using Pedar-X system(Novel Gmbh, Germany), the plantar pressure was measured for six regions of the foot: forefoot, midfoot, rearfoot, 1st metatarsal, 2-3th metatarsal, and 4-5th metatarsal, and for each sub-region, 4 features such as maximum force, contact area, peak pressure, and mean pressure were analyzed based on the plantar pressure. EMG(Electromyography) activity was measured by attaching surface electrodes to the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius medial head, and magnitude of muscle contraction was analyzed in IEMG(Integrated EMG) value. The results show that the maximum force, contact area, peak pressure, and mean pressure in the midfoot all increased while maximum force, peak pressure, contact area, mean pressure in the 1st metatarsal and 2-3th metatarsal all decreased when wearing functional shoes. Also, muscle activities in the four muscles were all decreased when wearing the functional shoes. This paper suggests that forfoot rocker shoes equipped with a metatarsal bar can help disperse the high pressure and absorb the shock to the foot as well as give positive influence on gait pattern and postural stability by reducing muscle fatigue during walking.

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation (손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치)

  • Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

AN INTEGRATED EMG STUDY OF RELATIONSHIPS BETWEEN PREFERRED CHEWING AND SIDE OF INITIAL MUSCLE PAINS (습관적(習慣的) 저작(咀嚼)과 저작근(咀嚼筋)의 동통유발(疼痛誘發)과의 관계에 대한 근전도학적(筋電圖學的) 연구(硏究))

  • Lee, Sung-Bok;Choi, Dae-Gyun;Choi, Boo-Byung;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.24 no.1
    • /
    • pp.165-176
    • /
    • 1986
  • The purpose of this study was to investigate electromyographically the relationship between preferred chewing side and side of initial muscle pains. In this study, 20 normal healthy subjects were selected , and each subject chewed randomly chewing gum for 20 minutes to establish preferred chewing side. To induce initial muscle pains, biting force of 10Kg on the gnathodynamometer was maintained by the subjects. And the Bioelectric processor EM2(Myo-Ironies Research, Inc. U.S.A.) with the surface electrodes was used to record the EMG activity during all experimental procedures. The results were as follows; 1. A majority of the present subjects (60%) had a preferred chewing side, but with few exceptions, subjects were unable to explain why a given side was preferred; explanations were only 'comfort' and 'habit' 2. The chewing, or working side was determined largely by the mean voltage of the surface electromyogram (EMG); in comparison with EMG from the non-wlring (contralateral) side, the working (ipsilateral) side showed a higher amplitude. 3. After the effort, the right masseter muscle is the most frequent site of pains, followed by the left masseter muscle, the anterior part of the right temporalis muscle and tile anterior part of the left temporalis muscle. 4. After the effort, mean voltages of masseter muscles were slightly increased, but mean voltages of temporalis anterior were slightly decreased at physiologic rest position. 5. No relationships could be established between preferred chewing side and side of initial muscle pains.

  • PDF

Electrical Properties of Integrated Ir/$IrO_2$/PZT/Pt/$IrO_2$/Ir Ferroelectric Capacitor on TiN/W Plug Structure (TiN/W 플러그 구조 위에 제작된 Ir/$IrO_2$/PZT/Pt/$IrO_2$/Ir 강유전체 커패시터의 전기적 특성)

  • Choi, J.H.;Kweon, S.Y.;Hwang, S.Y.;Kim, Y.J.;Son, Y.J.;Cho, S.S.;Lee, A.K.;Park, S.H.;Lee, B.H.;Park, N.K.;Park, H.C.;Chang, H.Y.;Hong, S.K.;Hong, S.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.321-322
    • /
    • 2006
  • The electrical properties of PZT thin film capacitor on TiN/W plug structure were investigated for high density ferroelectric memory devices. In order to enhance the ferroelectric properties of PZT capacitor, the process conditions of bottom electrodes were optimized. The fabricated PZT capacitor on TiN/W plug showed good remanent polarization, leakage current, and contact resistance of TiN/W plug, which were $33\;{\mu}C/cm^2$, $1.2{\times}10^{-6}\;A/cm^2$, and 5.3 ohm/contact, respectively.

  • PDF