Browse > Article
http://dx.doi.org/10.4313/JKEM.2005.18.4.285

Development of SiGe Heterostructure Epitaxial Growth and Device Fabrication Technology using Reduced Pressure Chemical Vapor Deposition  

Shim, K.H (전북대학교 반도체물성연구소 반도체과학기술학과)
Kim, S.H (한국전자통신연구원 기반기술연구소)
Song, Y.J (한국전자통신연구원 기반기술연구소)
Lee, N.E (성균관대학교 재료공학과)
Lim, J.W (한국전자통신연구원 기반기술연구소)
Kang, J.Y (한국전자통신연구원 기반기술연구소)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.18, no.4, 2005 , pp. 285-296 More about this Journal
Abstract
Reduced pressure chemical vapor deposition technology has been used to study SiGe heterostructure epitaxy and device issues, including SiGe relaxed buffers, proper control of Ge component and crystalline defects, two dimensional delta doping, and their influence on electrical properties of devices. From experiments, 2D profiles of B and P presented FWHM of 5 nm and 20 nm, respectively, and doses in 5×10/sup 11/ ∼ 3×10/sup 14/ ㎝/sup -2/ range. The results could be employed to fabricate SiGe/Si heterostructure field effect transistors with both Schottky contact and MOS structure for gate electrodes. I-V characteristics of 2D P-doped HFETs revealed normal behavior except the detrimental effect of crystalline defects created at SiGe/Si interfaces due to stress relaxation. On the contrary, sharp B-doping technology resulted in significant improvement in DC performance by 20-30 % in transconductance and short channel effect of SiGe HMOS. High peak concentration and mobility in 2D-doped SiGe heterostructures accompanied by remarkable improvements of electrical property illustrate feasible use for nano-sale FETs and integrated circuits for radio frequency wireless communication in particular.
Keywords
$\delta$-Doping; Reduced pressure chemical vapor deposition; SiGe; HMOS; RF-CMOS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Mheen, Y. J Song, J Y. Kang, K. H. Shim,and S. Hong, 'Low leakage and high performance of nMOSFET using SiGe layer as a diffusion barrier', Materials Science in Semiconductor Processing, Vol. 7, p, 375, 2004
2 Y. J. Song, K. H. Shim, J. Y. Kang, and K. I. Cho, 'DC and RF characteristics of SiGe pMOSFETs: enhanced operation speed and low 1/f Noise', ETRI Journal, Vol. 25, No. 3, p. 203, 2003
3 K. H. Shim, H. S. Kim, J. Y. Lee, J. Y. Kang, and M. K. Song, 'Low-temperature growth of in situ phosphorous-doped silicon films: two-step growth utilizing amorphous silicon buffers', Thin Solid Films, Vol. 369, p. 185, 2000
4 심규환, 송영주, 민봉기, 강진영, 'SiGe BiCMOS 기술' 전자공학회지, 29권, 9호, p. 68, 2002
5 D. O. Shin, S. H. Ban, Y. S. Ahn, N. E. Lee, and K. H. Shim, 'Structural and electrical characteristics of epitaxial $CoSi_2$ grown on $nSi_{0.83}Ge_{0.17}/n-Si(001)$ by reactive chemical vapor deposition using a Si capping layer', Thin Solid Film, Vol. 458, p. 269, 2004
6 D. T. Lie and K. L. Wang, 'Si/SiGe heterostructures for Si -based nano-electronics', Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 2, Chap. 1, p. 1, 2001
7 김영수, 'SiGe 반도체 기술 동향 분석' , 한국 과학기술정보연구원, 기술동향 분석보고서, 2003
8 C. T. Chuang, K. Bernstein, R. V. Joshi, R. Puri, K. Kim, E. J. Nowak, T. Ludwig, and I. Aller, 'Scaling Planar Silicon Devices', IEEE Circuits & Devices Magazine, p. 6, 2004
9 Y. J. Song, B. Mheen, J. Y. Kang, Y. S. Lee, N. E. Lee, J. H. Kim, J. I. Song, and K. H. Shim, 'A low-temperature and high-quality radical-assisted oxidation process utilizing a remote ultraviolet ozone source for high-performance SiGe/Si MOSFETs', Semicond. Sci. Technol., Vol. 19, No. 7, p. 792, 2004
10 A. Portavoce, P. Gas, I. Berbezier, A. Ronda, J. S. Christensen, and B. Svensson, 'Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy', J. Appl. Phys., Vol. 96, No. 6, p. 3158, 2004
11 E. Kasper and K. Lyutovich, 'Properties of Silicon Germanium and SiGe:Carbon', INSPEC, p. 327, 2000
12 J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, D. R. Greenberg, R. A. Groves, A. J. Joseph, J. S. Rieh, K. J. Stein, P. C. Wang, D. L. Harame, and B. S. Meyerson, 'Foundation of rf CMOS and SiGe BiCMOS technologies', IBM J. Res. & Dev., Vol. 47, No. 2, p, 101, 2003
13 S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, S. Tyagi, K. Mistry, M. Bohr, and Y. E. Mansy, 'A logic nanotechnology featuring strained silicon', IEEE Electron Device Lett., Vol. 25, No. 4, p, 191, 2004
14 C. K. Maiti and G. A. Armstrong, Applications of Silicon germanium Heterostructure Devices, Institute of Physics Publishing, Bristol and Philadelphia, p. 196, 2001
15 K. H. Shim, Y. J. Song, and J. Y. Kang, 'High performance SiGe pHMOS using reduced pressure CVD', Solid-state Technology, p. 51, 2004
16 Y. J. Song, J. W. Lim, J. Y. Kang, and K. H. Shim, 'High transconductance modulation-doped SiGe pMOSFETs by RPCVD', Electronics Letters, Vol. 38, No. 23, p. 1497, 2002
17 김상훈, 이승윤, 박찬우, 심규환, 강진영, '증착과 식각의 연속공정을 이용한 저온 선택적 실리콘-게르마늄 에피성장', 한국전기전자재료학회논문지, 16권, 9호, p. 657, 2003
18 S. L. Wu, P. W. Chen, S. J. Chang, S. Koh, and Y. Shiraki, 'Influence of delta -doping position on the characteristics of SiGe-Si DCFETs', IEEE Electron Device Lett., Vol. 25, No. 7, p. 477, 2004
19 S. H. Kim, Y. J. Song, K. H. Shim, and J. Y. Kang, 'High-quality strain relieved SiGe buffer prepared by means of thermally-driver relaxation and CMP process', SiGe: materials processing and devices, honolulu, Hawaii, 3-8, 2004