DOI QR코드

DOI QR Code

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides

폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기

  • Received : 2016.07.28
  • Accepted : 2016.08.09
  • Published : 2016.10.25

Abstract

A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

튜닝 가능한 광 신호 지연기를 설계, 제작 및 특성 측정을 하였다. 광 신호 지연기는 네 개의 폴리머 링 공진기 add/drop 필터들과 그 사이에 배치된 지연 도파로들로 구성되었다. 폴리머 도파로는 한변의 길이가 $1.8{\mu}m$ 인 정사각형 매립 구조이고, 코어와 클래딩의 굴절율은 각각 1.48과 1.37이다. 이와 같은 도파 구조로 인하여 매우 작은 반경의 곡선도파로를 활용함으로써, 콤팩트한 소자를 실현할 수 있다. 각각의 add/drop 필터의 링 공진기 상에 전극을 형성하여 열 광학 효과에 의한 튜닝이 가능하도록 하였다. 측정 결과, 각각의 add/drop 필터를 튜닝함으로써 지연 도파로의 수에 비례하는 지연 시간인 110 ps, 225 ps, and 330 ps를 확인할 수 있다.

Keywords

References

  1. R. W. Tkach, "Scaling optical communications for the next decade and beyond," Bell Labs Tech. J. 14, 3-9 (2010). https://doi.org/10.1002/bltj.20400
  2. S. K. Korotky, 'Traffic trends: Drivers and measures of cost-effective and energy-efficient technologies and architectures for backbone optical networks,' in Proc. Opt. Fiber Commun. Conf. (Los Angeles, CA, 2012), paper OM2G.1.
  3. H. Harai, H. Furukawa, K. Fujikawa, T. Miyazawa, and N. Wada, "Optical packet and circuit integrated networks and software defined networking extension," J. of Lightwave Technol. 32, 2751-2759 (2014). https://doi.org/10.1109/JLT.2014.2317697
  4. E. Parra and J. R. Lowell, "Towards applications of slow-light technology," Opt. Photon. News 18, 41-45 (2007).
  5. J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, "Seven-bit reconfigurable optical true time delay line based on silicon integration," Optics Express 22, 22707-22715 (2014). https://doi.org/10.1364/OE.22.022707
  6. J. Yao, "Microwave photonics," J. Lightwave Technol. 27, 314-335 (2009) https://doi.org/10.1109/JLT.2008.2009551
  7. L. Vestergaard Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light peed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999). https://doi.org/10.1038/17561
  8. M . Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638 (2003). https://doi.org/10.1038/nature02176
  9. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapour," Phys. Rev. Lett. 98, 153601 (2007). https://doi.org/10.1103/PhysRevLett.98.153601
  10. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062 (2005). https://doi.org/10.1364/JOSAB.22.001062
  11. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in one-dimensional optical superlattices," Appl. Phys. Lett. 88, 241103 (2006). https://doi.org/10.1063/1.2209716
  12. F. Morichetti, A. Melloni, J. Cap, J. Petracek, P. Bienstman, G. Priem, B. Maes, M. Lauritano, and G. Bellanca, "Self-phase modulation in slow-wave structures: A comparative numerical analysis," Opt. Quantum. Electron. 38, 761 (2006).
  13. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). https://doi.org/10.1364/OL.24.000711
  14. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. of Lightwave Technol. 15, 998-1005 (1997). https://doi.org/10.1109/50.588673
  15. D. Lee, T. Lee, J. Park, S. Kim, and Y. Chung, "Widely tunable double ring resonator Add/Drop filter," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 18, 216-220 (2007). https://doi.org/10.3807/HKH.2007.18.3.216
  16. O. Kwon, J. Kim, and Y. Chung, "Design and fabrication of variable optical signal delay line based on polymer coupled ring resonators," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 22, 256-261 (2011). https://doi.org/10.3807/KJOP.2011.22.6.256
  17. $Exguide^{TM}$ LFR series/ExguideTM ZPU12. Available at: www.chemoptics.co.kr