• Title/Summary/Keyword: integral solutions

검색결과 428건 처리시간 0.031초

Harltley 함수를 이용한 선형시스템의 상태해석에 관한 연구 (Study for State Analysis of Linear Systems by using Hartley Functions)

  • 김범수;민치현
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.806-811
    • /
    • 2012
  • In this paper Hartley functions are used to approximate the solutions of continuous time linear dynamical system. The Hartley function and its integral operational matrix are first presented, an efficient algorithm to solve the Stein equation is proposed. The algorithm is based on the compound matrix and the inverse of sum of matrices. Using the structure of the Hartley's integral operational matrix, the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

境界積分法에 의한 軸對稱 彈性 問題의 解析 (Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems)

  • 공창덕;김진우
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.787-797
    • /
    • 1986
  • 본 논문에서는 축대칭 선형 문제의 경계적분법에 대한 일반화한 정식화 과정 및 수치적 접근방법이 제시되었으며 정식화 과정 중 Navier 방정식의 기본해로부터 도 출되는 변위 및 표면적 Kernel을 구하는 Hankel 변환법을 이용한 $\ulcorner$직접축대칭접근법 $\lrcorner$과 3차원 Kevin 해로부터 원주경로 따라 적분한 $\ulcorner$3차원 접근법$\lrcorner$이 비교 검토되었 다.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

BOUNDS OF SOLUTIONS OF AN INTEGRO-DIFFERENTIAL EQUATION INVOLVING IMPULSES

  • Kim, Young Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권3호
    • /
    • pp.155-169
    • /
    • 2017
  • In this paper we obtain some integral inequalities involving impulses and apply our results to a certain integro-differential equation with impulses. First, we obtain a bound of the equation, and we use the bound to study some qualitative properties of the equation.

유전체로 코팅된 도체의 전자파 산란 (Electromagnetic Scattering from Conductors Coated with a Dielectric Material)

  • 한상호;서정훈;안종출;정백호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.82-85
    • /
    • 2003
  • In this paper, we present the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional conducting objects coated with a dielectric material. The integral equation treated here is the combined field integral equation. Numerical results of radar cross section for coated conducting structure are presented and compared with other available solutions.

  • PDF

AN EXTENSION OF FIXED POINT THEOREMS CONCERNING CONE EXPANSION AND COMPRESSION AND ITS APPLICATION

  • Wang, Feng;Zhang, Fang
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.281-290
    • /
    • 2009
  • The famous Guo-Krasnosel'skii fixed point theorems concerning cone expansion and compression of norm type and order type are extended, respectively. As an application, the existence of multiple positive solutions for systems of Hammerstein type integral equations is considered.

ON STABILITY OF NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS WITH IMPULSIVE EFFECT

  • Kang, Bowon;Koo, Namjip;Lee, Hyunhee
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.879-890
    • /
    • 2020
  • In this paper we study the stability properties of solutions of nonlinear impulsive integro-differential systems by using an integral inequality under the stability of the corresponding variational impulsive integro-differential systems. Also, we give examples to illustrate our results.