# OSCILLATION THEOREMS OF SOLUTIONS FOR SOME DIFFERENTIAL EQUATIONS

#### RAKJOONG KIM

ABSTRACT. Some oscillation criteria are given for second order nonlinear differential equations by means of integral averaging technique.

## §1. Introduction

The purpose of this paper is to study oscillatory properties of solutions with mixed argument

(1) 
$$\left[ \frac{1}{p(t)} k(x'(t)) \right]' + q(t) f(x(t), x(\phi(t)), x(\psi(t))) = 0,$$

(2) 
$$\left[ \frac{1}{p(t)} k(x'(t)) \right]' + q(t) f(x(t), x(\phi(t)), x(\psi(t))) g(x'(t)) = 0,$$

(3) 
$$\left[ \frac{1}{p(t)} k(x'(t)) \right]' + r(t)k(x'(t)) + q(t)f(x(t), x(\phi(t))) = 0,$$

where  $t \ge t_0$  and  $k(s) = |s|^{\nu} sgn \ s \ (\nu \ge 1)$ . Now  $f, g, p, q, \phi, \psi$  are to be specified in the following text. In this paper we always define a function P(t) as

(H) 
$$P(t) = \int_{t_0}^t p(s)^{1/\nu} ds, \quad t_0 \le t,$$

and assume that  $P(t) \to \infty$  as  $t \to \infty$ .

Received December 11, 2003.

<sup>2000</sup> Mathematics Subject Classification: 34C10, 34C15.

Key words and phrases: oscillation, delay equation, half-linear equation.

This research was supported by Hallym University Research Fund. (HRF-1997).

By a solution of (1), we mean a continuously differentiable function  $x:[t_0,\infty)\to\mathbb{R}$  such that x(t) satisfies (1) for all  $t\geq t_0$ . Let  $\xi:[\phi(t_0),t_0]\to\mathbb{R}$  be a continuous function. By a solution of (2), we mean a continuously differentiable function  $x:[\phi(t_0),\infty)\to\mathbb{R}$  such that  $x(t)=\xi(t)$  for  $\phi(t_0)\leq t_0$ , and x(t) satisfies (2) for all  $t\geq t_0$ . In the sequel it will be always assumed that nonconstant solutions of (1) exist on some ray  $[T,\infty),\ T\geq t_0$ . A solution x(t) is oscillatory if there exists a sequence  $\{t_n\}_{n=1}^\infty$  of zeros of x(t) such that  $t_n\to\infty$  as  $t\to\infty$ . Otherwise it is said to be nonoscillatory. Equation (1) is called oscillatory if all solutions are oscillatory.

Numerous oscillation criteria have been obtained ([1-13]). A half-linear differential equation

(4) 
$$\left[\frac{1}{p(t)}k(x'(t))\right]' + q(t)k(x(t)) = 0,$$

a delay differential equation

$$\left[\frac{1}{p(t)}k(x'(t))\right]' + q(t)|x(t)|^{\alpha}|x(\phi(t))|^{\beta}sgn \ x(t) = 0$$

and an advanced differential equation

$$\left[\frac{1}{p(t)}k(x'(t))\right]' + q(t)|x(t)|^{\alpha}|x(\psi(t))|^{\beta}sgn \ x(t) = 0$$

are the particular cases of (1) where  $\alpha + \beta = \nu$ ,  $\alpha \ge 0$ ,  $\beta \ge 0$ .

In the study of oscillatory behavior of solutions for differential equations, the averaging technique (Winter [14]) is a very important tool. The Winter's results were improved by many authors including Philos [10].

Following Philos, we introduce a class of functions P. Let  $D_0 = \{(t,s): t > s \ge t_0\}$  and  $D = \{(t,s): t \ge s \ge t_0\}$ . We say that a function  $H \in C(D, (-\infty, \infty))$  is said to belong to a function class P if

$$(H_1) \quad H(t,t) = 0 \text{ for } t \ge t_0, \quad H(t,s) > 0 \text{ on } D_0$$

$$\partial H(t,s) \qquad \partial H(t,s) \qquad$$

$$(H_2)$$
  $\frac{\partial H(t,s)}{\partial s} = -h(t,s)\sqrt{H(t,s)}$ 

where h is a positive function defined on D. We note that  $k^{-1}(t) = |t|^{1/\nu} sgn t$  is the inverse function of  $k(s) = |s|^{\nu} sgn s = |s|^{\nu-1} s$ .

### §2. Main results

Hereinafter we assume that

- $(A_1)$  the differentiable function  $p \in C[t_0, \infty)$  is positive and nonincreasing.
- $(A_2)$  the function  $q \in C[t_0, \infty)$  is positive.
- $(A_3)$   $\phi(t)$  is nondecreasing and continuously differentiable,  $\phi(t) \leq t$  and  $\phi(t) \to \infty$  as  $t \to \infty$ .
- $(A_4)$   $\psi(t)$  is nondecreasing and continuously differentiable,  $\psi(t) \geq t$ .
- $(A_5)$  a(t) is positive and continuously differentiable for all  $t \in [t_0, \infty)$ .
- $(A_6) \quad f(s,t,u) = |s|^{\alpha} |t|^{\beta} |u|^{\gamma} \operatorname{sgn} s, \ \alpha \ge 0, \ \beta \ge 0, \ \gamma \ge 0,$  $\alpha + \beta + \gamma = \nu, \nu \ge 1.$
- $(A_7)$   $g(s) \ge M > 0$  for  $s \ne 0$ .

THEOREM 1. Let the conditions  $(A_1) - (A_6)$  be satisfied. Assume that the following

(5) 
$$\limsup_{t \to \infty} \frac{1}{H(t,t_0)} \int_{t_0}^t \left[ H(t,s)a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t,s)^2 \right] ds = \infty$$

is valid, where

$$V(t,s) = \frac{a(t)^{1/(2\nu)} \left[ h(t,s) - \frac{a'(t)}{a(t)} \sqrt{H(t,s)} \right]}{2\sqrt{\nu} p(t)^{1/(2\nu)}}.$$

Then the equation (1) is oscillatory.

PROOF. Assume that x(t) is a nonoscillatory solution of equation (1) and that there exists  $T_0 \ge t_0$  such that

(6) 
$$x(t) > 0 \quad \text{for all } t \ge T_0.$$

The similar argument holds also for the case when x(t) is eventually negative. Then there exists a  $T_1$  with  $T_0 \ge T_0$  such that  $x(\phi(t)) \ge 0$  for

 $t \geq T_1 \geq T_0$ . It follows from (6) that  $\frac{1}{p(t)}|x'(t)|^{\nu} \operatorname{sgn} x'(t)$  is decreasing for  $t \geq T_1$ . We may assume that there exists  $T \geq T_1$  such that

(7) 
$$x'(t) > 0 \text{ for all } t \ge T \ge T_1.$$

Otherwise, for every  $T \ge T_1$  there exists  $t_0 \ge T \ge T_1$  such that  $x'(t_0) < 0$ . Then for  $t \ge t_0$  we have

$$\frac{1}{p(t)}|x'(t)|^{\nu}\,sgn\,x'(t)\leq C$$

where  $C = \frac{1}{p(t_0)} |x'(t_0)|^{\nu} \operatorname{sgn} x'(t_0) < 0$ . Since g is increasing, it follows that

$$x'(t) \le g^{-1}(Cp(t)) = -|Cp(t)|^{1/\nu} < 0.$$

Integrating from  $t_0$  to t we obtain

$$x(t) \le x(t_0) - \int_{t_0}^t |Cp(s)|^{1/
u} \, ds,$$

which implies that x(t) is eventually negative. Thus (7) follows. On the other hand, from  $(A_1)$ ,  $(A_2)$ , (6), (7) and that

$$\frac{d}{dt} \left[ \frac{1}{p(t)} x'(t)^{\nu} \right] = -\frac{p'(t)}{p(t)^2} x'(t)^{\nu} + \frac{1}{p(t)} \nu x'(t)^{\nu-1} x''(t) \le 0$$

we obtain for  $t \geq T_1$ 

$$(8) x''(t) \le 0.$$

Hence by [6, Lemma 2.1], for any  $k \in (0,1)$  there exists a  $T_2 \geq T_1$  such that for  $t \geq T_2$ 

(9) 
$$x(\phi(t)) \ge k \frac{\phi(t)}{t} x(t).$$

We note that for  $t \geq T_2$ 

(10) 
$$x(\phi(t)) \le x(t) \le x(\psi(t))$$

because of (6). We consider a Riccati transform

(11) 
$$W(t) = a(t) \frac{\frac{1}{p(t)} x'(t)^{\nu}}{x(t)^{\nu}}.$$

Since

$$\frac{d}{dt} \left[ \frac{W(t)}{a(t)} \right] = -q(t) \left[ \frac{x(\phi(t))}{x(t)} \right]^{\beta} \left[ \frac{x(\psi(t))}{x(t)} \right]^{\gamma} - \nu p(t)^{1/\nu} |W(t)|^{1+1/\nu} \le 0$$

we may assume that

$$(12) 0 < W(t) \le 1.$$

By means of (8), (9) and (10) we have

$$W'(t) = \frac{a'(t)}{a(t)} W(t) - a(t)q(t) \frac{f(x(t), x(\phi(t)), x(\psi(t)))}{x(t)^{\nu}} - \nu a(t)^{-1/\nu} p(t)^{1/\nu} |W(t)|^{1+1/\nu}$$

$$(13) \qquad \leq \frac{a'(t)}{a(t)} W(t) - a(t)q(t) \left[ k \frac{\phi(t)}{t} \right]^{\beta} - \nu a(t)^{-1/\nu} p(t)^{1/\nu} W^{2}(t).$$

Integrating for  $t \geq T \geq T_0$  after multiplying (11) by H(t, s) we obtain, in view of  $(H_2)$ ,

$$\begin{split} &\int_T^t H(t,s)a(s)q(s) \left[k\frac{\phi(s)}{s}\right]^\beta \,ds \\ &\leq -\int_T^t H(t,s)W'(s)\,ds - \int_T^t \nu a(s)^{-1/\nu}p(s)^{1/\nu}H(t,s)W(s)^2\,ds \\ &+ \int_T^t \frac{a'(s)}{a(s)}H(t,s)W(s)\,ds \\ &= -H(t,s)W(s)\Big|_{s=T}^{s=t} + \int_T^t \frac{\partial H(t,s)}{\partial s}W(s)\,ds \\ &- \int_T^t \left[\nu a(s)^{-1/\nu}p(s)^{1/\nu}H(t,s)W(s)^2 - \frac{a'(s)}{a(s)}H(t,s)W(s)\right] \,ds \end{split}$$

$$\begin{split} &= H(t,T)W(T) - \int_{T}^{t} \left[ \nu a(s)^{-1/\nu} p(s)^{1/\nu} H(t,s) W(s)^{2} \right. \\ &+ \left. \left\{ h(t,s) - \frac{a'(s)}{a(s)} \sqrt{H(t,s)} \right\} \sqrt{H(t,s)} W(s) \right] ds \\ &= H(t,T)W(T) - \int_{T}^{t} \left[ \left\{ \nu a(s)^{-1/\nu} p(s)^{1/\nu} \right\}^{1/2} \sqrt{H(t,s)} W(s) \right. \\ &+ \left. V(t,s) \right]^{2} ds + \int_{T}^{t} V(t,s)^{2} ds \end{split}$$

where

$$V(t,s) = \frac{a(t)^{1/(2\nu)} \left[ h(t,s) - \frac{a'(t)}{a(t)} \sqrt{H(t,s)} \right]}{2\sqrt{\nu} p(t)^{1/(2\nu)}}$$

From latter inequality and  $(H_2)$  it follows that

$$\int_T^t \left[ H(t,s)a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t,s)^2 \right] ds \le H(t,T)W(T)$$
$$- \int_T^t \left[ \left\{ \nu a(s)^{-1/\nu} p(s)^{1/\nu} \right\}^{1/2} \sqrt{H(t,s)} W(s) + V(t,s) \right]^2 ds.$$

Since this inequality is valid for all  $t \geq T_0$ , by  $(H_2)$  we have

$$\int_{T_0}^t \left[ H(t,s)a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t,s)^2 \right] ds$$
(14) 
$$\leq H(t,T_0)|W(T_0)| \leq H(t,t_0)|W(T_0)|.$$

Consequently, by (14) and  $(H_2)$  we have

$$(15) \int_{t_{0}}^{t} \left[ H(t,s)a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t,s)^{2} \right] ds$$

$$\leq \int_{t_{0}}^{T_{0}} \left[ H(t,s)a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t,s)^{2} \right] ds + H(t,t_{0})|W(T_{0})|$$

$$\leq H(t,t_{0}) \left\{ \int_{t_{0}}^{T_{0}} a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} ds + |W(T_{0})| \right\}$$

which contradicts the assumption (5). Thus (1) is oscillatory.

REMARK 1. In order for (1) to be oscillatory it is clear that (5) can be replaced by the conditions

(16) 
$$\lim \sup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t H(t, s) a(s) q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} ds = \infty,$$

(17) 
$$\lim \sup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t V(t, s)^2 ds < \infty.$$

COROLLARY 1. If the equality

(18) 
$$\limsup_{t \to \infty} \frac{1}{H(t,t_0)} \int_{t_0}^t \left[ H(t,s)a(s)q(s) - V(t,s)^2 \right] ds = \infty$$

is valid with V(t,s) the same as in Theorem 1, then the differential equation (4) is oscillatory.

COROLLARY 2. Let the assumptions  $(A_1) - (A_6)$  be satisfied. For  $n \ge 1$  if the inequality

(19) 
$$\lim_{t \to \infty} \sup_{t} \frac{1}{t^n} \int_{t_0}^t \left[ (kl)^{\beta} (t-s)^n a(s) q(s) - \frac{a(t)^{1/\nu}}{4\nu p(t)^{1/\nu}} (t-s)^{n-2} \left\{ n - \frac{a'(t)}{a(t)} (t-s) \right\}^2 \right] ds = \infty$$

is valid where a constant  $k \in (0,1)$ , then the equation (1) with  $\phi(t) = lt$   $(0 < l \le 1)$  is oscillatory.

PROOF. For  $n \ge 1$  if we choose the functions H(t,s) and h(t,s) by

$$(20) H(t,s) = (t-s)^n,$$

(21) 
$$h(t,s) = n(t-s)^{(n-2)/2},$$

the Corollary follows from Theorem 1.

REMARK 2. We can make use of various form of H(t,s). For  $n \ge 1$  we may define the function H(t,s) by

$$H(t,s) = \{P(t) - P(s)\}^n = \left\{ \int_s^t p(\tau)^{1/\nu} d\tau \right\}^n,$$
  
$$h(t,s) = np(s)^{1/\nu} \{P(t) - P(s)\}^{(n-2)/2}.$$

REMARK 3. In the proof of Theorem 1 we assume that (12) is valid with  $a(t) \equiv 1$ . Then if we define the function H(t,s) by (20), it follows that

$$V(t,s) = \frac{h(t,s)}{2\sqrt{\nu}p(t)^{1/(2\nu)}} = \frac{n(t-s)^{(n-2)/2}}{2\sqrt{\nu}p(t)^{1/(2\nu)}}.$$

Now it is obvious that

(22) 
$$\lim_{t \to \infty} \frac{1}{t^n} \int_{t_0}^t (t-s)^{n-2} \, ds = 0.$$

Thus if p(t) is bounded below by a positive constant and if  $\phi(t)/t \ge L > 0$  for  $t \ge t_0$ , the left side of (17) is equal to 0. On the other hand H(t, s) satisfies the conditions  $(K_1) - (K_3)$  in Wong [15]. Thus if the equality

(23) 
$$\lim_{t \to \infty} \int_{t_0}^t q(s) \, ds = \infty$$

is valid, by Lemma [15] we obtain

(24) 
$$\lim_{t \to \infty} \frac{1}{t^n} \int_{t_0}^t (t-s)^n q(s) \, ds = \infty.$$

Moreover, it is clear that

$$\lim \sup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t H(t, s) q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} ds$$

$$\geq \lim_{t \to \infty} \frac{(kL)^{\beta}}{t^n} \int_{t_0}^t (t - s)^n q(s) ds.$$

Therefore we conclude that both (1) and (2) are oscillatory if (23) is valid. We note that the left side of (24) is equal to 0 if  $q(t) \in L^1[t_0, \infty)$  (see [15]).

REMARK 4. Let the function H(t,s) be defined by (20) and put

$$U(t) \equiv \frac{a(t)^{1/\nu}}{4\nu p(t)^{1/\nu}}.$$

Then we obtain

$$\begin{split} V(t,s)^2 &= U(t) \left[ h(t,s) - \frac{a'(t)}{a(t)} \sqrt{H(t,s)} \right]^2 \\ &\geq 2U(t) \left[ h(t,s)^2 + \frac{a'(t)^2}{a(t)^2} H(t,s) \right]. \end{split}$$

We assume that U(t,s) is bounded and that  $\frac{a'(t)}{a(t)} \in L^2[t_0,\infty)$ . If then the equality

$$\lim_{t \to \infty} \int_{t_0}^t a(s)q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} ds = \infty$$

is valid, by (21), (22) and Lemma [15] (1) is oscillatory.

THEOREM 2. Under the conditions  $(A_1) - (A_7)$  we assume that the following

(25) 
$$\limsup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t \left[ MH(t, s) a(s) q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V(t, s)^2 \right] ds = \infty$$

is valid where V(t,s) is the same as in Theorem 1. Then the equation (2) is oscillatory.

PROOF. We define the function W(t) by (11). Then it follows that

(26) 
$$W'(t) \le \frac{a'(t)}{a(t)} W(t) - Ma(t)q(t) \left[ k \frac{\phi(t)}{t} \right]^{\beta} - \nu a(t)^{-1/\nu} p(t)^{1/\nu} W^{2}(t).$$

The rest of proof is the same as in the proof of Theorem 1.  $\Box$ 

THEOREM 3. Under the conditions  $(A_1)-(A_5)$  and  $(A_6)$  with  $\gamma=0$  we assume that the following

(27) 
$$\limsup_{t \to \infty} \frac{1}{H(t, t_0)} \int_{t_0}^t \left[ H(t, s) a(s) q(s) \left[ k \frac{\phi(s)}{s} \right]^{\beta} - V_1(t, s)^2 \right] ds = \infty$$

is valid where

$$V_1(t,s) = \frac{a(t)^{1/(2\nu)} \left[ h(t,s) - \left\{ \frac{a'(t)}{a(t)} - r(t)p(t) \right\} \sqrt{H(t,s)} \right]}{2\sqrt{\nu} p(t)^{1/(2\nu)}}.$$

Then the equation (3) is oscillatory.

PROOF. We define the function W(t) by (11). Then it follows that

$$W'(t) = \frac{a'(t)}{a(t)}W(t) - a(t)\frac{r(t)x'(t)^{\nu} + q(t)f(x(t), x(\phi(t))}{x(t)^{\nu}}.$$

Thus we obtain

(28) 
$$W'(t) \le \left[\frac{a'(t)}{a(t)} - r(t)p(t)\right]W(t) - a(t)q(t)\left[k\frac{\phi(t)}{t}\right]^{\beta} - \nu a(t)^{-1/\nu}p(t)^{1/\nu}W^{2}(t)$$

The rest of proof is the same as in the proof of Theorem 1.

We consider a perturbed differential equation of the form

(29) 
$$\left[ \frac{1}{p(t)} k(x'(t)) \right]' + q(t) f_1(x(t)) = m(t)$$

with the condition

$$\frac{f_1(s)}{s^{\nu}} \ge K \quad \text{for} \quad s \ne 0.$$

THEOREM 4. Let the conditions  $(A_1)$ ,  $(A_2)$ ,  $(A_4)$  and  $(A_8)$  be satisfied. Assume that

(30) 
$$\int_{-\infty}^{\infty} a(s)m(s) ds < \infty,$$

and that

$$\limsup_{t\to\infty}\frac{1}{H(t,t_0)}\int_{t_0}^t \left[KH(t,s)a(s)q(s)-V(t,s)^2\right]\,ds=\infty,$$

where V(t,s) is the same as in Theorem 1. Then the equation (29) is oscillatory.

PROOF. Assume that x(t) is a nonoscillatory solution. Then we may assume that there exist a positive constant C and  $T_0 \ge t_0$  such that

$$x(t) > C$$
 for all  $t \ge T_0$ .

We define the function W(t) by (11). Then it follows that

$$W'(t) = \frac{a'(t)}{a(t)}W(t) + \frac{a(t)}{x(t)^{\nu}} \left\{ -q(t)f_1(x(t)) + m(t) \right\}$$

$$-\nu a(t)^{-1/\nu}p(t)^{1/\nu}|W(t)|^{1+1/\nu}$$

$$\leq \frac{a'(t)}{a(t)}W(t) - Ka(t)q(t) + \frac{a(t)m(t)}{x(t)^{\nu}} - \nu a(t)^{-1/\nu}p(t)^{1/\nu}W(t)^{2}.$$

Thus for all  $t \geq T \geq T_0$  we obtain

$$\begin{split} &\int_{T}^{t} H(t,s)Ka(s)q(s)\,ds \leq -\int_{T}^{t} H(t,s)W'(s)\,ds \\ &-\int_{T}^{t} \nu a(s)^{-1/\nu}p(s)^{1/\nu}H(t,s)W(s)^{2}\,ds \\ &+\int_{T}^{t} H(t,s)\frac{a(s)m(s)}{x(s)^{\nu}}\,ds + \int_{T}^{t} \frac{a'(s)}{a(s)}H(t,s)W(s)\,ds \\ &= H(t,T)W(T) - \int_{T}^{t} \left[\nu a(s)^{-1/\nu}p(s)^{1/\nu}H(t,s)W(s)^{2} \right. \\ &+ \left. \left\{h(t,s) - \frac{a'(s)}{a(s)}\sqrt{H(t,s)}\right\}\sqrt{H(t,s)}W(s)\right]\,ds \\ &+ \frac{1}{C^{\nu}}\int_{T}^{t} H(t,s)a(s)m(s)\,ds \\ &= H(t,T)|W(T)| - \int_{T}^{t} \left[\left\{\nu a(s)^{-1/\nu}p(s)^{1/\nu}\right\}^{1/2}\sqrt{H(t,s)}W(s) + V(t,s)\right]^{2}\,ds + \int_{T}^{t} V(t,s)^{2}\,ds + \frac{1}{C^{\nu}}\int_{T}^{t} H(t,s)a(s)m(s)\,ds \end{split}$$

where V(t,s) is the same as in Theorem 1. Consequently for each  $t \geq T_0$  we get

$$\begin{split} \int_{T_0}^t \left[ KH(t,s) a(s) q(s) - V(t,s)^2 \right] \, ds &\leq H(t,T_0) |W(T_0)| \\ &+ \frac{1}{C^{\nu}} H(t,T_0) \int_T^t a(s) m(s) \, ds. \end{split}$$

The rest of proof is the same as in the proof of Theorem 1.  $\Box$ 

#### References

- [1] M. Del Pino, M. Elgueta, and R. Manasevich, Generalizing Hartman's oscillation result for  $(|x'(t)|^{p-2}x'(t))' + c(t)|x(t)|^{p-2}x = 0, p > 1$ , Houston J. Math. 17 (1991), 63–70.
- [2] J. Dzurina, Oscillation of second order differential equation with mixed argument, J. of Math. Anal. Appl. 190 (1995), 821-828.
- [3] A. Elbert, A half-linear second order differential equation . in "Qualitative Theory of Differential Equations.", Colloq. Math. Soc. János Bolyai. 30 (1979), 153-180.
- [4] \_\_\_\_\_, Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations in "Ordinary and Partial Differential Equations." Lecture Notes in Mathematics., vol. 964, Springer-Verlag, New York /Berlin, 1982, pp. 187-212.
- [5] A. Elbert and T. Kusano, Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations, Acta Math. Hungar. 56 (1990), 325-336.
- [6] L. Erbe, Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), 49-56.
- [7] H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1979), 78-84.
- [8] J. W. Heidel, A nonoscillation theorem for a nonlinear second order differential equation., Proc. Amer. Math. Soc. 22 (1969), 485-488.
- [9] M. K. Kong and J. S. W. Wong, Nonoscillation theorems for a sublinear ordinary differential equation., Proc. Amer. Math. Soc. 87 (1983), 467-474.
- [10] Ch. G. Philos, Oscillation theorems for linear differential equations, Arch. Math. 53 (1989), 483–492.
- [11] Y. V. Rogovchenko, Oscillation Criteria for certain nonlinear differential equations, J. Math. Anal. Appl. 215 (1997), 334–357.
- [12] \_\_\_\_\_, Oscillation Criteria for certain nonlinear differential equations, J. Math. Anal. Appl. 229 (1999), 399–416.
- [13] K. Takasi, Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl. 189 (1995), 115-127.
- [14] A. Winter, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.
- [15] J. S. W. Wong, On Kamenev-Type Oscillation Theorems for Second-Order Differential Equations with Damping, J. Math. Anal. Appl. 258 (2001), 244-257.

Department of Mathematics Hallym University Kangwon 200-702, Korea *E-mail*: rjkim@hallym.ac.kr