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OSCILLATION THEOREMS OF SOLUTIONS
FOR SOME DIFFERENTIAL EQUATIONS

RakJoong Kim

ABSTRACT. Some oscillation criteria are given for second order
nonlinear differential equations by means of integral averaging tech-

nique.

§1. Introduction

The purpose of this paper is to study oscillatory properties of solutions

with mixed argument

1) [?%Mf@» +q(0) f(2(t), 2($(1)), 2((2))) = 0,
@) [ismy@»_+qu@axaawxﬂmeMfa»=m
(3) [iﬁﬂfwﬂ +r(t)k(2’ (1) + a(t)f ((t), 2(8(2))) = 0.

where t > tg and k(s) = [s|”sgns (v > 1). Now f,g,p,q, ¢, are to be
specified in the following text. In this paper we always define a function

P(t) as

(H) P@=/MW”@

to
and assume that P(t) — oo as t — oc.
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By a solution of (1), we mean a continuously differentiable function « :
[to, 00) — R such that x(t) satisfies (1) for all t > to. Let £ : [¢(t0), to] —
R be a continuous function. By a solution of (2), we mean a continuously
differentiable function x : [¢(tg),00) — R such that x(t) = &(t) for
?(to) < to, and z(t) satisfies (2) for all £ > 5. In the sequel it will
be always assumed that nonconstant solutions of (1) exist on some ray
[T,00), T > t9. A solution z(t) is oscillatory if there exists a sequence
{tn}32, of zeros of z(t) such that ¢, — co as t — oco. Otherwise it is said
to be nonoscillatory. Equation (1) is called oscillatory if all solutions are
oscillatory.

Numerous oscillation criteria have been obtained ([1-13]). A half-
linear differential equation

() [;%k(w’(t))] T q(t)k(z(t)) =0,

a delay differential equation

Tg(lt—)k(x’(t))] + q(t)l2(0)|*|($(2))Psgn =(t) = 0

and an advanced differential equation

__}_ :cl , T g ﬁs n _
FGh “’)] + q(®)l2 |2 ((2)Psgn z(t) = 0

are the particular cases of (1) where a+8=v, a >0, 3> 0.

In the study of oscillatory behavior of solutions for differential equa-
tions, the averaging technique (Winter [14]) is a very important tool.
The Winter’s results were improved by many authors including Philos
[10].

Following Philos, we introduce a class of functions P. Let Dy =
{(t,s) :t >s>t;} and D = {(t,5):t> s> tp}. We say that a function
H € C(D,(—00,00)) is said to belong to a function class P if

(Hl) H(t,t)=0f0’l‘t2to, H(t,s)>00nD0
(H) aHa(i’ 9) — _h(t,s)/H3)

where h is a positive function defined on D. We note that k=1(t) =
[t|1/¥sgnt is the inverse function of k(s) = |s|*sgns = |s|"~s.
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§2. Main results
Hereinafter we assume that

(A;) the differentiable function p € C[tg, 00) is positive and
nonincreasing.

(A2) the function g € Cltp, 00) is positive.

(A3) (t) is nondecreasing and continuously differentiable, ¢(t) <t
and ¢(t) — 00 as t — oc.

(A4) (t) is nondecreasing and continuously differentiable, v (t) > t.

(As) a(t) is positive and continuously differentiable for all ¢ [tg, c0).

(A6) f(s,t,u) = |s|*|t)’|u" sgns, @ >0, 20, ¥ 20,
a+B+y=v,v2>1.

(A7) g(s) > M >0 for s #0.

THEOREM 1. Let the conditions (A1) — (Ag) be satisfied. Assume
that the following

t

(5) limsup

s B
t—00 H(tl to) Ji, [H(t,s)a(s)q(s) [kfﬁ—)} —V(t,8)21| ds = oo

is valid, where

a(t)/ ) [ a'(t) \/—*]
2\/—P(t)1/(2")

V(t,s) =

Then the equation (1) is oscillatory.

PROOF. Assume that z(t) is a nonoscillatory solution of equation (1)
and that there exists Ty > tg such that

(6) z(t) >0 forall t > T.

The similar argument holds also for the case when z(t) is eventually
negative. Then there exists a T) with Ty > Tp such that z(¢(t)) > 0 for
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1
t>Ty > Tp. It follows from (6) that IT(—t—)kc’ (t)|¥ sgn2'(t) is decreasing
for t > T;. We may assume that there exists 7' > T such that

(7) z'(t) >0forallt >T > T.

Otherwise, for every T' > T there exists to > T > T3 such that z'(tp) <
0. Then for t > t; we have

]‘ / v /
mlx @ sgna’(t) < C

where C = |2’ (to)|” sgna’(to) < 0. Since g is increasing, it follows

that

1
p(to)
'(t) < g1(Cp(t)) = —|Cp(t)|'/* < 0.

Integrating from to to ¢t we obtain

o(t) < a(to) — | 1Cp(s)|* ds,

to

which implies that z(t) is eventually negative. Thus (7) follows. On the
other hand, from (A1), (42), (6), (7) and that

% l:p—(lt—)“m’(t)l!] — p(gl ,(t) + Tl)_ux ( )V_lx//(t) <0

we obtain for t > T}
(8) z'(t) <0

Hence by [6, Lemma 2.1], for any k € (0,1) there exists a T > T} such
that for ¢t > T,

() o(t).

9) z(4(t) 2 2
We note that for ¢t > 15

(10) z((t)) < z(t) < z(y(t))
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because of (6). We consider a Riccati transform

(11) W(t) = a(t) 22

Since

£ 58] T

we may assume that

(12) 0< W(t) < 1.

By means of (8), (9) and (10) we have

w0 = ZEw(0) - a(pen L2200

— va(t) "V ()M W (1)

’ B
13) < ZEWE - ata) [F22] - vat)n0 W

Integrating for t > T' > T} after multiplying (11) by H(¢, s) we obtain,
in view of (Ha),

/T CH(t, $)a(s)q(s) {k@r ds

<_ /T H(t, s)W'(s) ds — /T va(s)~ ¥ p(s) H(t, s)W ()2 ds
+ /T Z/((j))H(t,s)W(s)ds

s=t Y OH(t, s)
vt + /T B Wi(s)ds

- /T {lxa(s)_l/"p(s)l/"H(t,S)W(s)2 - a/(s)H(t,s)W(s) ds

= —H(t,s)W(s)




500 RakJoong Kim

Il

H{t,TYW(T) - /T [Va(s)‘l/"p(s)l/"H(t, s)W(s)?
+ {h(t, s) — %\/H(t,s)} m,s)W(s)} ds
= H(t, T)W(T) - /T [{Va(s)_l/"p(s)l/"}l/ P JHEIW(s)

V(t,s))? ds + / tV(t,s)zd
T

where ,( )
(D@ het s
(0 [h(t, )-8

NZIORLD

From latter inequality and (H3) it follows that

/Tt [H(t s)a(s)q(s) [ ¢( )] —V(t,s)?

[ {Va(s)’l/"p(s)l/"} VH(t,s)W(s) + V(t,s) 2ds.
T

H(t, s)]
Vi(t,s) = .

ds < H(t, T)W(T)

Since this inequality is valid for all ¢t > Tp, by (H2) we have

/T: I:H(t s)a (s)q(s)[ ¢( )] -V (t,s)?| ds

(14) < H(t,To)W(To)| < H(t, t0)|W(To)|-

Consequently, by (14) and (Hj) we have
(15)

[{ t, s)a(s)q(s)[ XS )] V(t,s)2] ds

To ML
‘/t lH(t,s)a(s)q(s) [kﬂ;l] -V, 3)2] ds + H(t,t0)|W (To)|

H(t,to) { [ i) [+22) o+ IW(T0)|}

A

IA



Oscillation theorems of solutions 501
which contradicts the assumption (5). Thus (1) is oscillatory. O

REMARK 1. In order for (1) to be oscillatory it is clear that (5) can
be replaced by the conditions

t B
(16) hmts—l}go it ), H{(t, s)a(s)q(s) [k@:l ds = oo,
(17) limts—l»lgoH_(tl—t(;/O V(t,s)?ds < oo.

COROLLARY 1. If the equality

t

(18) lim sup

moup s | [Ht9)als)a(s) = Vit 5] ds = o0

is valid with V (t,s) the same as in Theorem 1, then the differential
equation (4) is oscillatory.

COROLLARY 2. Let the assumptions (A1) — (As) be satisfied. For
n > 1 if the inequality

t

(19) limsup i [(kl)ﬂ(t — 5)"a(s)q(s)

t—00 to

a(t)l/u n—2 CL (t)
_— (t - — =
4Vp(t)1/V( s) alt) (t ) ds = 00
is valid where a constant k € (0,1), then the equation (1) with ¢(t) =

It (0 <1< 1) is oscillatory.
PROOF. For n > 1 if we choose the functions H(t,s) and h(t, s) by

(20) H(t,s) = (t—s)",
(21) h(t,s) = n(t — s)("=2/2,
the Corollary follows from Theorem 1. O

REMARK 2. We can make use of various form of H(t,s). For n > 1
we may define the function H(t,s) by

H(t,5) = {P(t) — P(s)}" = { [ wrr df} ,
h(t, 5) = np(s)/¥ {P(t) ~ P(s)}"~272.
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REMARK 3. In the proof of Theorem 1 we assume that (12) is valid
with a(t) = 1. Then if we define the function H (¢, s) by (20), it follows
that
ht,s) _ n(t—s)n2/2

2v/up(t)/@)  2y/up(t)t )

Vi(t,s) =

Now it i1s obvious that

t—oo I"

t
(22) lim / (t—s)""2ds =0.
to

Thus if p(t) is bounded below by a positive constant and if ¢(¢)/¢t > L >
0 for t > tg, the left side of (17) is equal to 0. On the other hand H (¢, s)
satisfies the conditions (K) — (K3) in Wong [15]. Thus if the equality

¢
(23) tlim q(s)ds = o0
—00 to

is valid, by Lemma [15] we obtain

(24) lim 1 (t—s)"q(s)ds = 0.

n
t—oo t to

Moreover, it is clear that

t

B
. 1
llmtS_l)lgo m o H(t,S)Q(S) |:k'——'—‘—:| ds

> lim M/t(t—s)"q(s) ds.

n
t—o00 t to

Therefore we conclude that both (1) and (2) are oscillatory if (23) is
valid. We note that the left side of (24) is equal to 0 if q(t) € L[ty, 00)
(see [15]).

REMARK 4. Let the function H(t, s) be defined by (20) and put

_ ()
Ut) = o
Then we obtain
, 2
Vit,s)2 = U(t) [h(t, 5) — ‘;((:)) H(t,s)]
ar 2
> 2U(t) [h(t, s)? + %H (t, s)] :
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a'(t)
a(t)

We assume that U(t, s) is bounded and that € L2[ty,00). If then

the equality

lim t a(s)q(s) [k?i—s)}ﬁ ds = o0

t—oo to

is valid, by (21), (22) and Lemma [15] (1) is oscillatory.

THEOREM 2. Under the conditions (A1) — (A7) we assume that the
following

(25) limsup E(Tltj)' /t t [MH(t, s)a(s)g(s) [k@] ’
-V, 3)2] ds = o0

is valid where V (t,s) is the same as in Theorem 1. Then the equation
(2) is oscillatory.

PrROOF. We define the function W (t) by (11). Then it follows that

(26) W'(t) < ‘;'((f))

t
— va(t) Y p()/ WA(L).

B
W (t) — Ma(t)q(t) {kﬂt—)]

The rest of proof is the same as in the proof of Theorem 1. O

THEOREM 3. Under the conditions (A1) — (As) and (Ag) with v =0
we assume that the following

?@r

S

(27) limsup—H(—tl’gj /tt [H(t, s)a(s)q(s) [k

t—o0

— Vit 3)2] ds = 00

is valid where

a'(t)

a(t)1/ @) [h(t,s) — { () - r(t)p(t)} VH(t, 3)]
o)/ |

Then the equation (3) is oscillatory.

Vl(t, S) =
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PROOF. We define the function W (¢) by (11). Then it follows that

r(t)2’(t) + ¢(1) f(z(t), 2(4(t))

W’(t) _ a’(t) W(t) _ a(t) x(t)u

a(t)

Thus we obtain

29 W < [29 rp0| e - et [122)
—va(t) (0} W1

The rest of proof is the same as in the proof of Theorem 1. d0

We consider a perturbed differential equation of the form

(29) |5 )] + a0 e0) = m)
with the condition
(As) hS) Sk for 50,

SV
THEOREM 4. Let the conditions (A1), (A2), (A4) and (Ag) be sat-
isfied. Assume that

(30) / ~ a(s)m(s) ds < oo,

and that

t

lim sup [KH(t,s)a(s)q(s) — V(t,s)?] ds = oo,

t—o0 H(t,to) to

where V (t,s) is the same as in Theorem 1. Then the equation (29) is
oscillatory.

PROOF. Assume that z(t) is a nonoscillatory solution. Then we may
assume that there exist a positive constant C and Ty > to such that

z(t) > C forallt > Tp.
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We define the function W (t) by (11). Then it follows that

W0 = 2D + 20 (a0 ile() + mie)
— valt) ¥ p(t) W ()

a(t) aft)m(t)
0 —~W(t) — Ka(t)q(t) + 2@

Thus for all t > T > Ty we obtain

—va(t) () W (t)2,

/t H(t,s)Ka(s)q(s)ds < — /t H(t,s)W'(s)ds
T T
—/ va(s) " p(s) /Y H(t, s)W (s)* ds
T
’ a(s)m(s) "d(s)
+/TH(t,s) AT ds+/T a(s )H(t , )W (s)ds
t
= H(t, TYW(T) —/ [Va(s)'U"p(s)””H(t,s)W(s)2
T
{h(t \/H } \/ﬁ(t,s)W(s)] ds
L+ %/T H(t, s)a(s)m(s) ds
t
= H(t,T)|W(T)| —/T [{l/a( “vp( I/V} VH(t, )W (s
+ VR, 8 ds+/ V(t,s)2 ds+——/ H{(t, s)a(s)m(s) ds

where V (¢, s) is the same as in Theorem 1. Consequently for each t > Tj
we get

/T [KH(t,s)a(s)q(s) — V(t,5)?] ds < H(t,To)|W(To)|

4

+%H(t,T0) / a(s)m(s) ds

T

The rest of proof is the same as in the proof of Theorem 1. [
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