• Title/Summary/Keyword: integral gain

Search Result 223, Processing Time 0.024 seconds

Optimal Constant PIDM Feedback Controller using Time Weighted Performance Index for Linear Multivariable Systems (선형 다변수 시스템에 있어서 시간비중 성능지수를 이용한 최적 상수 PIDM 궤한 제어기)

  • 권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.5
    • /
    • pp.360-366
    • /
    • 1987
  • The design problem of optimal constant PIDM (proportional-integral-derivative and measurable variable) feedback controller for linear time-invariannt systems is investigated with the time-weighted quadratic performance index. Necessary conditions for an optimality of the controller are derived and an algorithm for computing the optimal feedback gain is presented. It is shown via example that the design mithod using the time-weighted quadratic performance index improves the transient responses of the closed-loop system.

  • PDF

Speed Control of Induction Machine with Fuzzy PI Controller using MATLAB/SIMULINK (MATLAB/SIMULINK를 이용한 유도전동기 퍼지 PI제어기의 속도제어)

  • 이학주
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.211-214
    • /
    • 2000
  • The conventional PI controller has been widely used in industrial application due to the simple control algorithm. But it is very difficult to find the optimal PI control gain. Therefore in this paper to obtain optimal performance fuzzy proportional-plus-integral controller for the vector control system of an induction machine is presented. The simulation model is created in MATLAB/SIMULINK. The simulation results demonstrate the good performance of this system.

  • PDF

An Optimum Tuning for IMC-PID Controller (IMC-PID 제어기의 최적 동조)

  • Park, Jong-Su;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.167-169
    • /
    • 2005
  • This paper proposes an optimum tuning which improves the tuning effect of IMC-PID and guarantees the performance and robustness of controller system by considering gain margin, phase margin, sensitivity functions and integral square error(ISE) for IMC-PID controller.

  • PDF

Short-Ended Coaxial Slot-Coupled Strip Array Antenna (단락종단된 동축 슬롯 결합 스트림 배열 안테나)

  • 김중표;이창원
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.399-403
    • /
    • 2000
  • A new type of collinear antenna called short-ended coaxial slot-coupled strip array antenna is investigated theoretically. The antenna has an advantage of structural simplicity. The integral equations are derived for the proposed structure by use of the Fourier transform and mode expansion, and the simultaneous linear equations are obtained. The slot electric field and strip current are then obtained by solving the simultaneous linear equation. The effects of slot and strip number on the radiation efficienty, beamwidth and directivity gain are also presented.

  • PDF

An Optimum Tuning for IMC-PID Controller (IMC-PID 제어기의 최적 동조)

  • Park, Jong-Su;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.344-347
    • /
    • 2006
  • This paper proposes an optimum tuning which improves the tuning effect of IMC-PID and guarantees the performance and robustness of controller system by considering gain margin, phase margin, sensitivity functions and integral square error(ISE) for IMC-PID controller.

  • PDF

Short-Ended Electromagnetically Coupled Coaxial Dipole Array Antenna

  • Kim, Joong-Pyo;Lee, Chang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.87-92
    • /
    • 2002
  • A short-ended electromagnetically coupled coaxial dipole array antenna is investigated theoretically. The antenna has an advantage of structural simplicity. The integral equations are derived for the proposed structure by use of the Fourier transform and mode expansion, and the simultaneous linear equations are obtained. The slot electric field and strip current are obtained by solving the simultaneous linear equations. The effects of slot and strip numbers on the radiation efficiency, beamwidth and directivity gain of the antenna are presented.

Two-Parameter Optimization of CANDU Reactor Power Controller

  • Park, Jong-Woon-;Kim, Sung-Bae-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.146-149
    • /
    • 1994
  • A nonlinear dynamic optimization has been performed for reactor power control system of CANDU 6 nuclear power plant considering xenon, fuel and moderator temperature feedback effects. Integral-of-Time-multiplied Absolute-Error (ITAE) criterion has been used as a performance index of the system behavior. Optimum controller gain are found by searching algorithm of Sequential Quadratic Programming (SQP). System models are referenced from most recent literatures. Signal flow network construction and optimization have been done by using commercial computer software package.

  • PDF

Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation (게인 스케줄링을 이용한 광대역 온도제어기의 설계)

  • Jeong, Jae Hyeon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.

A 1.2 V 12 b 60 MS/s CMOS Analog Front-End for Image Signal Processing Applications

  • Jeon, Young-Deuk;Cho, Young-Kyun;Nam, Jae-Won;Lee, Seung-Chul;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.717-724
    • /
    • 2009
  • This paper describes a 1.2 V 12 b 60 MS/s CMOS analog front-end (AFE) employing low-power and flexible design techniques for image signal processing. An op-amp preset technique and programmable capacitor array scheme are used in a variable gain amplifier to reduce the power consumption with a small area of the AFE. A pipelined analog-to-digital converter with variable resolution and a clock detector provide operation flexibility with regard to resolution and speed. The AFE is fabricated in a 0.13 ${\mu}m$ CMOS process and shows a gain error of 0.68 LSB with 0.0352 dB gain steps and a differential/integral nonlinearity of 0.64/1.58 LSB. The signal-to-noise ratio of the AFE is 59.7 dB at a 60 MHz sampling frequency. The AFE occupies 1.73 $mm^2$ and dissipates 64 mW from a 1.2 V supply. Also, the performance of the proposed AFE is demonstrated by an implementation of an image signal processing platform for digital camcorders.