• Title/Summary/Keyword: integral estimate

Search Result 226, Processing Time 0.026 seconds

Three-Dimensional Visualization and Recognition of Micro-objects using Photon Counting Integral Imaging Microscopy (광자 계수 집적 영상 현미경을 사용한 마이크로 물체의 3차원 시각화와 인식)

  • Cho, Myungjin;Cho, Giok;Shin, Donghak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1207-1212
    • /
    • 2015
  • In this paper, we propose three-dimensional (3D) visualization and recognition techniques of micro-objects under photon-starved conditions using photon counting integral imaging microscopy. To capture high resolution 2D images with different perspectives in the proposed method, we use Synthetic Aperture Integral Imaging (SAII). Poisson distribution which is mathematical model of photon counting imaging system is used to extract photons from the images. To estimate 3D images with 2D photon counting images, the statistical estimation is used. Therefore, 3D images can be obtained and visualized without any damage under photon-starved conditions. In addition, 3D object recognition can be implemented using nonlinear correlation filters. To prove the usefulness of our technique, we implemented the optical experiment.

Fast Pedestrian Detection Using Estimation of Feature Information Based on Integral Image (적분영상 기반 특징 정보 예측을 통한 고속 보행자 검출)

  • Kim, Jae-Do;Han, Young-Joon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • This paper enhances the speed of a pedestrian detection using an estimation of feature information based on integral image. Pedestrian model or input image should be resized to the size of various pedestrians. In case that the size of pedestrian model would be changed, pedestrian models with respect to the size of pedestrians should be required. Reducing the size of pedestrian model, however, deteriorates the quality of the model information. Since various features according to the size of pedestrian models should be extracted, repetitive feature extractions spend the most time in overall process of pedestrian detection. In order to enhance the processing time of feature extraction, this paper proposes the fast extraction of pedestrian features based on the estimate of integral image. The efficiency of the proposed method is evaluated by comparative experiments with the Channel Feature and Adaboost training using INRIA person dataset.

Comparison of the Numerical, Theoretical, and Empirical Scattering Models for Randomly Rough Surfaces

  • Hong Jin-Young;Oh Yisok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.725-728
    • /
    • 2005
  • The scattering problem of the randomly rough surface is examined by the method of moments(MoM), small perturbation method (SPM), integral equation method (IEM) and the semi-empirical polarimetic model. To apply the numerical technique of the MoM to microwave scattering from a rough surface, at first, many independent randomly rough surfaces with a rms height and a correlation length are generated with Gaussian random deviate. Then, an efficient Monte Carlo simulation technique is applied to estimate the scattering coefficients of the surfaces.

  • PDF

Two-Weighted Intergal Inequalities for Differential Forms

  • Xiuyin, Shang;Zhihua, Gu;Zengbo, Zhang
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, we make use of the weight to obtain some two-weight integral inequalities which are generalizations of the Poincar$\'{e}$ inequality. These inequalities are extensions of classical results and can be used to study the integrability of differential forms and to estimate the integrals of differential forms. Finally, we give some applications of this results to quasiregular mappings.

CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS

  • Nagpal, Sumit;Ravichandran, V.
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.567-592
    • /
    • 2014
  • Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk are widely studied. A new methodology is employed to construct subclasses of univalent harmonic mappings from a given subfamily of univalent analytic functions. The notions of harmonic Alexander operator and harmonic Libera operator are introduced and their properties are investigated.

A STUDY ON THE EFFECTIVE ALGORITHMS BASED ON THE WEGMANN'S METHOD

  • Song, Eun-Jee
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.595-602
    • /
    • 2006
  • Determinations of conformal map from the unit disk onto a Jordan region are reduced to solve the Theodorsen equation which is an integral equation for the boundary correspondence function. Among numerical conformal maps the Wegmann's method is well known as a Newton efficient one for solving Theodorsen equation. However this method has not so wide class of convergence. We proposed as an improved method for convergence by applying a low frequency filter to the Wegmann's method. In this paper, we investigate error analysis and propose an automatic algorithm based on this analysis.

The difference between two distribution functions

  • Hong, Chong Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1449-1454
    • /
    • 2013
  • There are many methods for measuring the difference between two location parameters. In this paper, statistics are proposed in order to estimate the difference of two location parameters. The statistics are designed not using the means, variances, signs and ranks, but with the cumulative distribution functions. Hence these are measured as the differences in the area between two univariate cumulative distribution functions. It is found that the difference in the area between two empirical cumulative distribution functions is the difference of two sample means, and its integral is also the difference of two population means.

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • 조종두;곽시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.837-842
    • /
    • 1994
  • The boundary element method was used for studying singularities of an interface crack with contact zones. Because the contact zone size was extremely small in a tention field, a large number of Gaussian points were is used for numerical integration of the Kernels. In order to estimate the contact zone size, iteration method was used. The interface crack tips with contact zones showed no oscillatory behavior and J-integral values across the interface were conserved.

  • PDF

ON GENERALIZED WRIGHT'S HYPERGEOMETRIC FUNCTIONS AND FRACTIONAL CALCULUS OPERATORS

  • Raina, R.K.
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.191-203
    • /
    • 2005
  • In the present paper we first establish some basic results for a substantially more general class of functions defined below. The results include simple differentiation and fractional calculus operators(integration and differentiation of arbitrary orders) for this class of functions. These results are then invoked in determining similar properties for the generalized Wright's hypergeometric functions. Further, norm estimate of a certain class of integral operators whose kernel involves the generalized Wright's hypergeometric function, and its composition(and other related properties) with the fractional calculus operators are also investigated.

  • PDF

NEW BOUNDS FOR FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FIELDS

  • Isikay, Sevcan;Pekin, Ayten
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1149-1161
    • /
    • 2021
  • In this paper, we present new bounds on the fundamental units of real quadratic fields ${\mathbb{Q}}({\sqrt{d}})$ using the continued fraction expansion of the integral basis element of the field. Furthermore, we apply these bounds to Dirichlet's class number formula. Consequently, we provide computational advantages to estimate the class numbers of such fields. We also give some numerical examples.