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CONSTRUCTION OF SUBCLASSES OF UNIVALENT

HARMONIC MAPPINGS

Sumit Nagpal and V. Ravichandran

Abstract. Complex-valued harmonic functions that are univalent and
sense-preserving in the open unit disk are widely studied. A new method-
ology is employed to construct subclasses of univalent harmonic mappings
from a given subfamily of univalent analytic functions. The notions of
harmonic Alexander operator and harmonic Libera operator are intro-
duced and their properties are investigated.

1. introduction

Let H denote the class of all complex-valued harmonic functions f in the
open unit disk D := {z ∈ C : |z| < 1} normalized by f(0) = 0 = fz(0) − 1 =
fz̄(0). Such functions can be written in the form f = h+ ḡ, where

(1) h(z) = z +

∞∑

n=2

anz
n and g(z) =

∞∑

n=2

bnz
n

are analytic in D. In 1984, Clunie and Sheil-Small [7] investigated the subclass
S0
H of H consisting of univalent and sense-preserving functions. A function
f = h+ ḡ ∈ H is sense-preserving if the Jacobian Jf (z) = |h′(z)|2 − |g′(z)|2 is
positive or equivalently |g′(z)| < |h′(z)| in D. The class S0

H is a compact family
with respect to the topology of locally uniform convergence. The classical
family S of normalized analytic univalent functions is a subclass of S0

H . Let
S∗0
H , K0

H and C0
H be the subclasses of S0

H consisting of functions mapping D

onto starlike, convex and close-to-convex domains, respectively, just as S∗, K
and C are the subclasses of S mapping D onto their respective domains.

In [26], we have investigated the properties of functions in the subclass F0
H ⊂

C0
H defined by the condition |fz(z)−1| < 1−|fz̄(z)| for all z ∈ D. This subclass

was closely related to the class F ⊂ C, introduced by MacGregor [20], consisting
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of analytic functions satisfying |f ′(z)− 1| < 1 for z ∈ D. We [26] proved that a
harmonic function f = h+ ḡ ∈ F0

H if and only if the analytic functions h+ ǫg
belong to F for each |ǫ| = 1. Using this property, the coefficient estimates,
growth results, boundary behavior, convolution properties and sharp bound for
radius of convexity and starlikeness for the class F0

H were investigated. This
connection between the classes F and F0

H has motivated to give the following
definition which turns out to be a simple but an effective method in construction
of subclasses of univalent harmonic mappings from a given subfamily of S.
Definition 1.1. Suppose that G is a subfamily of S. Denote by G0

H the class
consisting of harmonic functions f = h+ ḡ for which h+ǫg ∈ G for each |ǫ| = 1,
h and g being analytic functions in D. We call G0

H the harmonic analogue of G
and write G ⊲ G0

H .

By Definition 1.1, it readily follows that F ⊲ F0
H . If G0

H is the harmonic
analogue of G ⊂ S, then it is easy to see that G ⊂ G0

H . Further properties of
the harmonic analogue G0

H for a subfamily G ⊂ S are investigated in Section 2.
In Section 3, the harmonic analogues of some well-known subclasses of S are
determined and their properties are discussed.

Let A be the subclass of H consisting of normalized analytic functions. Let
Λ : A → A be the Alexander integral operator [1] defined by

(2) Λ[f ](z) =

∫ z

0

f(t)

t
dt.

Krzyż and Lewandowski [16] constructed an example to show that Λ does not
carry S into S. Another familiar integral operator Θ : A → A is the Libera
operator [18] defined by

(3) Θ[f ](z) =
2

z

∫ z

0

f(t) dt.

Even this operator does not preserve univalence. Campbell and Singh [4] gave
examples of univalent functions which the operator Θ takes to non-univalent
functions. However, these two operators preserve certain subclasses of univalent
functions. In the last section of this paper, two notions of harmonic Alexander
operators Λ+

H ,Λ
−
H : H → H and a notion of harmonic Libera operator ΘH :

H → H are introduced and their properties are investigated.

2. Some properties of harmonic analogue G0

H

In this section, we will investigate the properties of the harmonic analogue
G0
H for subfamily G ⊂ S. For this, the notion of stable harmonic mappings

introduced by Hernández and Mart́ın in [15] is needed. A sense-preserving
harmonic mapping f = h+ ḡ is said to be stable univalent (resp. stable starlike,
stable convex and stable close-to-convex) if all the mappings fλ = h+ λḡ with
|λ| = 1 are univalent (resp. starlike, convex and close-to-convex) in D. The
following result was proved in [15].
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Lemma 2.1. A sense-preserving harmonic mapping f = h+ ḡ is stable univa-

lent (resp. stable starlike, stable convex and stable close-to-convex) if and only

if the analytic functions Fλ = h+ λg are univalent (resp. starlike, convex and

close-to-convex) in D for each |λ| = 1.

Let SS0
H , SS∗0

H , SK0
H and SC0

H be subclasses of S0
H consisting of stable

univalent, stable starlike, stable convex and stable close-to-convex mappings,
respectively. Then S∗ ⊂ SS∗0

H ⊂ S∗0
H , K ⊂ SK0

H ⊂ K0
H and C ⊂ SC0

H ⊂ C0
H .

Moreover SK0
H ⊂ SS∗0

H ⊂ SC0
H ⊂ SS0

H . In view of Definition 1.1 and Lemma
2.1, it follows that SS0

H , SS∗0
H , SK0

H and SC0
H are harmonic analogues of S,

S∗, K and C, respectively.
The first theorem is quite simple but a useful tool in the investigation of

results regarding the harmonic analogue G0
H for a subfamily G ⊂ S.

Theorem 2.2. Suppose that G ⊂ S and G ⊲ G0
H . Then

(i) G0
H ⊂ SS0

H ;
(ii) If f ∈ S ∩ G0

H , then f ∈ G;
(iii) If f = h+ ḡ ∈ G0

H , then the harmonic mappings fλ = h+ λḡ ∈ G0
H for

each |λ| = 1;
(iv) If J ⊂ G, then J 0

H ⊂ G0
H where J 0

H is the harmonic analogue of J .

Proof. Let f = h + ḡ ∈ G0
H . Then h + ǫg ∈ G for each |ǫ| = 1 which imply

that h(0) = g(0) = h′(0)− 1 = g′(0) = 0 using the normalization of functions
in G. Also, since h + ǫg is univalent, (h + ǫg)′ 6= 0 in D for each |ǫ| = 1. This
imply that the Jacobian Jf (z) 6= 0 for all z ∈ D and since Jf (0) = 1 > 0, f is

sense-preserving in D. By Lemma 2.1, it follows that f ∈ SS0
H . This proves

(i). The part (ii) follows immediately from Definition 1.1. For the proof of (iii),
let f = h+ ḡ ∈ G0

H and |λ| = 1. Then it is easy to see that h+ λ̄ǫg ∈ G for each
|ǫ| = 1 and so h + λḡ ∈ G0

H . To prove (iv), let f = h + ḡ ∈ J 0
H . As J ⊲ J 0

H ,
h+ ǫg ∈ J for each |ǫ| = 1. Since J ⊂ G we have h+ ǫg ∈ G for each |ǫ| = 1
which shows that f ∈ G0

H . This completes the proof of the theorem. �

Theorem 2.2(ii) conveys that every analytic univalent function in G0
H is a

member of G. Since the members of G0
H are stable univalent by Theorem 2.2(i),

we have the following corollary which follows by [15, Theorem 7.1].

Corollary 2.3. Suppose that G ⊂ S and G ⊲ G0
H . If f = h + ḡ ∈ G0

H , then

the analytic mappings Fµ = h + µg are univalent in D for each |µ| ≤ 1. In

particular, h is univalent.

Recall that convexity and starlikeness are hereditary properties for conformal
mappings and they do not extend to harmonic mappings (see [10]). Chuaqui,
Duren and Osgood [6] introduced the notion of fully starlike and fully convex
functions that do inherit the properties of starlikeness and convexity, respec-
tively (see also [27]). A harmonic mapping f of the unit disk D is fully convex
if it maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve.
Such a harmonic mapping f with f(0) = 0 is fully starlike if it maps every
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circle |z| = r < 1 in a one-to-one manner onto a curve that bounds a domain
starlike with respect to the origin. Applying Theorem 2.2(iv) and using the
fact that stable starlike (resp. stable convex) mappings are fully starlike (resp.
fully convex) (see [15, 27]), we have:

Corollary 2.4. Suppose that G ⊂ S and G ⊲ G0
H . If G ⊂ S∗ (resp. G ⊂ K),

then members of G0
H are fully starlike (resp. fully convex) in D.

The harmonic Koebe function

(4) K(z) = H(z) +G(z), H(z) :=
z − 1

2
z2 + 1

6
z3

(1− z)3
, G(z) :=

1

2
z2 + 1

6
z3

(1− z)3

shows that the classes S0
H , S∗0

H and C0
H are not harmonic analogues of any

subfamily of S since

H(z) +G(z) =
z + 1

3
z3

(1− z)3
, z ∈ D,

and (H+G)(i/
√
3) = (H+G)(−i/

√
3) which imply that H+G is not univalent

in D. Similarly, K0
H is not a harmonic analogue of any subfamily G ⊂ S. For if

G ⊲K0
H , then G ⊂ K. The harmonic half-plane mapping

(5) L(z) =M(z) +N(z), M(z) :=
z − 1

2
z2

(1 − z)2
, N(z) :=

− 1

2
z2

(1− z)2

belongs to K0
H and M(z)−N(z) = z/(1− z)2 6∈ K. These observations suggest

that given a subfamily G0
H ⊂ S0

H , it is possible that G0
H is not a harmonic

analogue of any subclass of S. This motivates us to determine a necessary and
sufficient condition for a subfamily G0

H ⊂ S0
H to be a harmonic analogue of

some family G ⊂ S. This is contained in the following corollary.

Corollary 2.5. A subfamily G0
H ⊂ S0

H is a harmonic analogue of some family

G ⊂ S if and only if G0
H ⊂ SS0

H .

Proof. The necessary part follows by Theorem 2.2(i). For the sufficient part,
suppose that G0

H ⊂ SS0
H . Considering the set G = {h+ǫg : h+ḡ ∈ G0

H and |ǫ| =
1}, it is evident that G ⊂ S and G ⊲ G0

H by using Lemma 2.1. �

It is easy to see that if I and J are subclasses of S with I ⊲I0
H and J ⊲J 0

H ,
then I ∩J ⊲ I0

H ∩J 0
H and I ∪J ⊲ I0

H ∪J 0
H . The next theorem determines the

coefficient bounds for functions in the harmonic analogue G0
H .

Theorem 2.6. Suppose that G ⊂ S and G ⊲ G0
H . Let the Taylor coefficients

an(f) of the series of each f ∈ G satisfies |an(f)| ≤ p(n) for n = 2, 3, . . . where
p is a function of n. Then the respective Taylor coefficients An(f) and Bn(f)
of the series of h and g of each function f = h+ ḡ ∈ G0

H satisfies

(6) |An(f)|+ |Bn(f)| ≤ p(n) for n = 2, 3, . . . .

In particular, we have
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(a) ||An(f)| − |Bn(f)|| ≤ p(n), n = 2, 3, . . ..
(b) Let h0 ∈ G be such that its Taylor coefficients satisfy |an(h0)| = p(n) for

n = 2, 3, . . .. Then for an analytic function g0, the harmonic function

f0 = h0 + ḡ0 ∈ G0
H if and only if g0 ≡ 0.

Proof. Let f = h + ḡ ∈ G0
H . Then h + ǫg ∈ G for each |ǫ| = 1 so that

|an(h + ǫg)| ≤ p(n) for n = 2, 3, . . .. But an(h + ǫg) = An(f) + ǫBn(f) for
n = 2, 3, . . . so that (6) is satisfied with appropriate choice of ǫ = ǫ(n).

The part (a) is evident from (6). For (b), suppose that f0 = h0 + ḡ0 ∈ G0
H .

Then |An(f0)| + |Bn(f0)| ≤ p(n) for n = 2, 3, . . .. But |An(f0)| = |an(h0)| =
p(n) for n = 2, 3, . . . so that Bn(f0) = 0 for n = 2, 3, . . .. Thus g0 ≡ 0. The
converse part is obvious. �

The next theorem determines the upper and lower bounds on the growth of
a harmonic mapping in G0

H .

Theorem 2.7. Suppose that G ⊂ S and G ⊲ G0
H . If

P (|z|) ≤ |f ′(z)| ≤ Q(|z|), z ∈ D

for each f ∈ G where P and Q are integrable functions of |z|, then each f ∈ G0
H

satisfies

(7)

∫ |z|

0

P (ρ) dρ ≤ |f(z)| ≤
∫ |z|

0

Q(ρ) dρ, z ∈ D.

In particular, we have the following.

(i) The range of every function f ∈ G0
H contains the disk

{
w ∈ C : |w| < lim

|z|→1

∫ |z|

0

P (ρ) dρ

}
,

provided the limit exists.

(ii) The Jacobian Jf of each function f ∈ G0
H satisfies

P 2(|z|) ≤ Jf (z) ≤ Q2(|z|), z ∈ D.

Proof. Let f = h+ ḡ ∈ G0
H . Then h+ ǫg ∈ G for each |ǫ| = 1 so that

(8) P (|z|) ≤ |h′(z) + ǫg′(z)| ≤ Q(|z|), z ∈ D.

In particular, this shows that

P (|z|) ≤ |h′(z)| − |g′(z)| and |h′(z)|+ |g′(z)| ≤ Q(|z|), z ∈ D.

If Γ is the radial segment from 0 to z, then

|f(z)| =
∣∣∣∣
∫

Γ

∂f

∂ζ
dζ +

∂f

∂ζ
dζ

∣∣∣∣ ≤
∫

Γ

(|h′(ζ)|+ |g′(ζ)|)|dζ| ≤
∫ |z|

0

Q(ρ) dρ.



572 S. NAGPAL AND V. RAVICHANDRAN

Next, let Γ be the pre-image under f of the radial segment from 0 to f(z).
Then

|f(z)| =
∫

Γ

∣∣∣∣
∂f

∂ζ
dζ +

∂f

∂ζ
dζ

∣∣∣∣ ≥
∫

Γ

(|h′(ζ)| − |g′(ζ)|)|dζ| ≥
∫ |z|

0

P (ρ) dρ.

This proves (7).
The covering result in (i) follows from the left hand inequality of (7) by

letting |z| → 1. For the proof of (ii), let f = h+ḡ ∈ G0
H . Then (8) gives |h′(z)|−

|g′(z)| ≤ Q(|z|) and |h′(z)| + |g′(z)| ≤ Q(|z|). Multiplying the corresponding
sides of these two inequalities, we obtain Jf (z) ≤ Q2(|z|) for z ∈ D. The left
hand inequality follows on similar lines. �

If a subfamily G ⊂ S is compact with respect to the topology of locally
uniform convergence, then so is its harmonic analogue G0

H . This is seen by the
following theorem.

Theorem 2.8. Suppose that G ⊂ S and G ⊲ G0
H . Then G is compact if and

only if G0
H is compact.

Proof. For necessary part, suppose that fn = hn + gn ∈ G0
H for n = 1, 2, . . .

and that fn → f uniformly on compact subsets of D. Then f is harmonic and
so f = h + ḡ. It is easy to see that hn → h and gn → g locally uniformly so
that hn + ǫgn → h + ǫg for each |ǫ| = 1. Since hn + ǫgn ∈ G, it follows that
h+ ǫg ∈ G for each |ǫ| = 1 using the compactness of G. Thus f = h+ ḡ ∈ G0

H .
For sufficient part, let fn ∈ G for n = 1, 2, . . . such that fn → f uniformly on

compact subsets of D. Then f is univalent. Since G ⊂ G0
H and G0

H is compact,
f ∈ G0

H . By Theorem 2.2(ii), f ∈ G. �

The next theorem investigates the relation between the radius of starlikeness,
convexity and close-to-convexity of the classes G and G0

H .

Theorem 2.9. Suppose that G ⊂ S and G ⊲ G0
H . Then the classes G and G0

H

have the same radius of starlikeness, convexity and close-to-convexity.

Proof. Since G ⊂ G0
H , it suffices to show that if r0 is the radius of starlikeness

(resp. convexity and close-to-convexity) of G, then f is starlike (resp. convex
and close-to-convex) in |z| < r0 for each f ∈ G0

H . To see this, suppose that
f = h + ḡ ∈ G0

H . Then the analytic functions h + ǫg belong to the class
G. Consequently the functions h + ǫg are starlike (resp. convex and close-to-
convex) in |z| < r0. In view of Lemma 2.1, it follows that f is starlike (resp.
convex and close-to-convex) in |z| < r0. �

For analytic functions

(9) f(z) = z +

∞∑

n=2

anz
n and F (z) = z +

∞∑

n=2

Anz
n
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belonging to A, their convolution (or Hadamard product) is defined as

(f ∗ F )(z) = z +
∞∑

n=2

anAnz
n, z ∈ D.

In the harmonic case, with f = h + ḡ and F = H + Ḡ belonging to H, their
harmonic convolution is defined as f ∗F = h∗H+g ∗G. Harmonic convolutions
are investigated in [7, 8, 9, 12, 33].

Suppose that I and J are subclasses of H. We say that a class I is closed
under convolution if I ∗I ⊂ I, that is, if f , g ∈ I then f ∗ g ∈ I. Similarly, the
class I is closed under convolution with members of J if I ∗ J ⊂ I. Given a
subfamily G ⊂ S, the next theorem discusses the convolution properties of its
harmonic analogue G0

H .

Theorem 2.10. Suppose that G ⊂ S is closed under convolution and G ⊲ G0
H .

Then

(i) The convolution of each member of G0
H with itself is again a member

of G0
H ;

(ii) If (f + g)/2 ∈ G for all f , g ∈ G, then G0
H is closed under convolution.

Proof. Let f = h+ḡ ∈ G0
H . To prove (i), it suffices to show that (h∗h)+ǫ(g∗g) ∈

G for each |ǫ| = 1. For |ǫ| = 1, note that

(h ∗ h) + ǫ(g ∗ g) = (h+ iνg) ∗ (h− iνg)

where ±ν are square roots of ǫ. Since G is closed under convolution, it follows
that (h ∗ h) + ǫ(g ∗ g) ∈ G so that f ∗ f ∈ G0

H . This proves (i).
For the proof of (ii), let fi = hi+ḡi ∈ G0

H (i = 1, 2). Considering the analytic
functions

F1 = (h1 − g1) ∗ (h2 − ǫg2) = (h1 ∗ h2)− ǫ(h1 ∗ g2)− (h2 ∗ g1) + ǫ(g1 ∗ g2)

and

F2 = (h1 + g1) ∗ (h2 + ǫg2) = (h1 ∗ h2) + ǫ(h1 ∗ g2) + (h2 ∗ g1) + ǫ(g1 ∗ g2)

for |ǫ| = 1, we see that

1

2
(F1 + F2) = (h1 ∗ h2) + ǫ(g1 ∗ g2).

Since F1, F2 ∈ G and using the hypothesis, it is easy to deduce that f1 ∗ f2 ∈
G0
H . �

If G is a convex subset of S, then (1 − t)f + tg ∈ G for all f , g ∈ G and
t ∈ [0, 1]. As a result, Theorem 2.10(ii) gives the following corollary.

Corollary 2.11. Suppose that G ⊂ S is a convex set and is closed under

convolution. If G ⊲ G0
H , then G0

H is closed under convolution.



574 S. NAGPAL AND V. RAVICHANDRAN

In [12], Goodloe considered the Hadamard product ∗̃ of a harmonic function
with an analytic function defined as follows:

(10) f ∗̃ϕ = ϕ∗̃f = h ∗ ϕ+ g ∗ ϕ,
where f = h + ḡ is harmonic and ϕ is analytic in D. The next theorem
investigates the properties of the product ∗̃.
Theorem 2.12. Suppose that G ⊂ S and G ⊲ G0

H . Let O be a subfamily of A
such that G is closed under convolution with members of O. Then ϕ∗̃f ∈ G0

H

for all ϕ ∈ O and f ∈ G0
H .

Proof. Let f = h+ ḡ ∈ G0
H and ϕ ∈ O. Then

ϕ∗̃f = ϕ ∗ h+ ϕ ∗ g = H +G,

where H = ϕ ∗ h and G = ϕ ∗ g are analytic in D. Setting F = H + ǫG =
ϕ∗(h+ǫg) where |ǫ| = 1, we note that F ∈ G since G∗O ⊂ G. ThusH+G ∈ G0

H

as desired. �

The next theorem indicates that the classes G and G0
H have similar convex

combination properties.

Theorem 2.13. Suppose that G ⊂ S and G ⊲ G0
H . Then G is closed under

convex combinations if and only if G0
H is closed under convex combinations.

Proof. Firstly we will prove the necessary part. For n = 1, 2, . . ., suppose that
fn ∈ G0

H where fn = hn + gn. For
∑∞
n=1 tn = 1, 0 ≤ tn ≤ 1, the convex

combination of fn’s may be written as

f(z) =
∞∑

n=1

tnfn(z) = h(z) + g(z),

where

h(z) =

∞∑

n=1

tnhn(z) and g(z) =

∞∑

n=1

tngn(z).

are analytic in D with h(0) = g(0) = h′(0) − 1 = g′(0) = 0. For |ǫ| = 1, we
have

(h+ ǫg)(z) =

∞∑

n=1

tn(hn + ǫgn)(z), z ∈ D.

Since the class G is closed under convex combination and hn + ǫgn ∈ G for
n = 1, 2, . . ., it follows that h+ ǫg ∈ G. Thus f = h+ ḡ ∈ G0

H . This proves the
necessary part.

The sufficient part follows by using the fact that G ⊂ G0
H and applying

Theorem 2.2(ii). �

Theorem 2.13 immediately yields:

Corollary 2.14. Suppose that G ⊂ S and G ⊲ G0
H . Then G is a convex set if

and only if G0
H is a convex set.
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Keeping in mind that S ⊲ SS0
H , S∗ ⊲ SS∗0

H , K ⊲ SK0
H and C ⊲ SC0

H , we
determine the coefficient estimates, growth results, convolution properties and
sharp bound for radius of starlikeness, convexity and close-to-convexity for the
classes SS0

H , SS∗0
H , SK0

H and SC0
H , using the results proved in this section.

Note that parts (i) and (ii) of the following theorem have been independently
proved in [15, Section 8].

Theorem 2.15. Let f = h+ ḡ ∈ S0
H where h and g are given by (1).

(i) (Coefficient estimates) If f ∈ SS0
H ,SS∗0

H or SC0
H , then the sharp in-

equality ||an| − |bn|| ≤ n holds for n = 2, 3, . . .. Equality occurs for the

analytic Koebe function k(z) = z/(1 − z)2. In case, f ∈ SK0
H then

||an| − |bn|| ≤ 1 for n = 2, 3, . . ., with the equality occurring for the

analytic half-plane mapping l(z) = z/(1− z).
(ii) (Growth estimates and covering theorem) If f ∈ SS0

H ,SS∗0
H or SC0

H ,

then we have

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1− |z|)2 , z ∈ D.

In particular, the range f(D) contains the disk |w| < 1/4. These results

are sharp for the analytic Koebe function k. If f ∈ SK0
H , then

|z|
1 + |z| ≤ |f(z)| ≤ |z|

1− |z| , z ∈ D,

and therefore the range f(D) contains the disk |w| < 1/2. The analytic

half plane mapping l shows that these results are best possible.

(iii) (Compactness) The classes SS0
H , SS∗0

H , SK0
H and SC0

H are compact

with respect to the topology of locally uniform convergence.

(iv) (Radii of starlikeness, convexity and close-to-convexity) Let rS(G0
H),

rC(G0
H) and rCC(G0

H) denote the radius of starlikeness, convexity and

close-to-convexity, respectively of a subclass G0
H ⊂ S0

H . Then

rS(SS∗0
H ) = rS(SK0

H)= rC(SK0
H)= rCC(SS∗0

H )= rCC(SK0
H)= rCC(SC0

H)= 1;

rC(SS0
H) = rC(SS∗0

H ) = rC(SC0
H) = 2−

√
3;

rS(SS0
H) = tanh(π/4), and rS(SC0

H) = 4
√
2− 5.

For rCC(SS0
H), refer to [16].

(v) (Convolution properties)
(a) If f ∈ SK0

H , then f ∗ f ∈ SK0
H .

(b) If ϕ ∈ K and f ∈ SS∗0
H (resp. f ∈ SK0

H and f ∈ SC0
H), then

f ∗̃ϕ ∈ SS∗0
H (resp. f ∗̃ϕ ∈ SK0

H and f ∗̃ϕ ∈ SC0
H).

(vi) If f = h+ ḡ ∈ SK0
H , then

Re
h(z)

z
>

1

2
+

∣∣∣∣
g(z)

z

∣∣∣∣

for all z ∈ D. The analytic half plane mapping l shows that the constant
1/2 is best possible.
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Proof. Making use of the well-known coefficient estimates and distortion theo-
rems for functions in the class S (see [14]), parts (i) and (ii) follow by applying
Theorems 2.6 and 2.7, respectively. Theorem 2.8 gives (iii), while (iv) follows
by using [14, Chapter 13] and Theorem 2.9. Since K∗S∗ ⊂ S∗, K∗K ⊂ K and
K∗C ⊂ C, the convolution properties are easy to deduce from Theorems 2.10(i)
and 2.12. For (vi), let f = h + ḡ ∈ SK0

H . Then h + ǫg ∈ K for each |ǫ| = 1.
By the well-known Marx Strohhäcker theorem [22, Theorem 2.6(a), p. 57], it
follows that Re(h + ǫg)(z)/z > 1/2 for z ∈ D. By picking ǫ wisely, we obtain
the desired result. �

We close this section with the following remark.

Remark 2.16. It is clear that the classes SS0
H , SS∗0

H and SC0
H are not closed

under convolution. However, since K∗K ⊂ K, K ⊲SK0
H and K is a non-convex

set, it is expected that SK0
H is also not closed under convolution in view of

Corollary 2.11. It will be an interesting open problem to determine whether
SK0

H is closed under convolution.

3. Harmonic analogues of subclasses of S

In this section, we will determine the harmonic analogues of certain sub-
classes of S. Apart from results of Section 2, we will make use of the following
two lemmas which are the generalization of Theorems 2.10 and 2.12. Their
proof being similar are omitted.

Lemma 3.1. Let I and J be subfamilies of S such that I ∗ I ⊂ J . If I0
H and

J 0
H denote the harmonic analogues of I and J , respectively, then

(a) If f ∈ I0
H , then f ∗ f ∈ J 0

H ;
(b) If (f + g)/2 ∈ J for all f , g ∈ J , then I0

H ∗ I0
H ⊂ J 0

H .

Lemma 3.2. Suppose that I and J are subfamilies of S. Let O ⊂ A be such

that f ∗ g ∈ J for all f ∈ I and g ∈ O. Then ϕ∗̃f ∈ J 0
H for all ϕ ∈ O and

f ∈ I0
H , where I ⊲ I0

H , J ⊲ J 0
H and ∗̃ is defined by (10).

3.1. Class R

Denote by R the class consisting of functions f ∈ A which satisfy Re f ′(z) >
0 for z ∈ D. By well-known Noshiro-Warschawski Theorem (see [14, Chapter
7, p. 88]), R ⊂ S. In [19], MacGregor investigated the properties of functions
in the class R. Also, it is easy to see that R is a compact family and is
closed under convex combinations. However, the class R is not closed under
convolutions. The analytic function

(11) f(z) = −z − 2 log(1− z) = z +
∞∑

n=2

2

n
zn

belongs to R but f ∗ f 6∈ R. The first theorem of this section determines the
harmonic analogue of the class R and discusses its properties.
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Theorem 3.3. The harmonic analogue of R is the class R0
H defined by

R0
H = {f = h+ ḡ ∈ H : Reh′(z) > |g′(z)| for all z ∈ D}.

In particular, R0
H ⊂ SC0

H . Moreover, we have the following:

(i) If f = h+ḡ ∈ R0
H where h and g are given by (1), then |an|+|bn| ≤ 2/n

for n = 2, 3, . . .. Equality holds for the function f given by (11).
(ii) Every function f ∈ R0

H satisfies

−|z|+ 2 log(1 + |z|) ≤ |f(z)| ≤ −|z| − 2 log(1− |z|), z ∈ D,

and hence the range of each function f ∈ R0
H contains the disk |w| <

2 log 2− 1. These results are sharp for the function f given by (11).
(iii) The class R0

H is compact with respect to the topology of locally uniform

convergence.

(iv) rC(R0
H) =

√
2− 1 and rCC(R0

H) = 1.
(v) If ϕ ∈ K and f ∈ R0

H , then f ∗̃ϕ ∈ R0
H . Also, if f ∈ A with

Reϕ(z)/z > 1/2 for z ∈ D and f ∈ R0
H , then f ∗̃ϕ ∈ R0

H .

(vi) The class R0
H is closed under convex combinations of its members.

Proof. Suppose that R⊲G0
H . If f = h+ ḡ ∈ G0

H , then the inequality Re(h′(z)+
ǫg′(z)) > 0 holds for each z ∈ D and |ǫ| = 1. With appropriate choice of
ǫ = ǫ(z), it follows that

Reh′(z) > |g′(z)|, z ∈ D

so that f ∈ R0
H . To prove the reverse inclusion, let f = h+ ḡ ∈ R0

H . Then for
|ǫ| = 1 we have

Re(h′(z) + ǫg′(z)) ≥ Reh′(z)− |g′(z)| > 0, z ∈ D

which imply that h+ ǫg ∈ R and hence f ∈ G0
H . This shows that R ⊲R0

H .

Since R ⊂ C, R0
H ⊂ SC0

H by Theorem 2.2(iv). In view of [19, Theorems 1
and 2, p. 533], the proof of parts (i), (ii) and (iv) follow by applying Theorems
2.6, 2.7 and 2.9, respectively. Theorems 2.8 and 2.13 verify the validity of (iii)
and (vi), respectively. Since K ∗R ⊂ R (by [2, Corollary 3.10]), Theorem 2.12
shows that f ∗̃ϕ ∈ R0

H if ϕ ∈ K and f ∈ R0
H . For the proof of the other part

of (v), it suffices to show that if ϕ ∈ A with Reϕ(z)/z > 1/2 and f ∈ R, then
f ∗ ϕ ∈ R. To see this, note that (f ∗ ϕ)′(z) = f ′(z) ∗ ϕ(z)/z for z ∈ D. By
[37, Lemma 4, p. 146], it follows that Re(f ∗ ϕ)′ > 0 so that f ∗ ϕ ∈ R. This
concludes the proof of the theorem. �

Note that Mocanu [23] independently proved that if f is a harmonic mapping
in a convex domain Ω such that Re fz(z) > |fz̄(z)| for z ∈ Ω, then f is univalent
and sense-preserving in Ω while Ponnusamy et al. [30] showed that members
of R0

H are close-to-convex in D.
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Now we will determine the radius of convexity for a certain family of har-
monic functions. For G ∈ A, consider the family

R0
H(G) =

{
f = h+ ḡ ∈ H : Re

h′(z)

G′(z)
>

∣∣∣∣
g′(z)

G′(z)

∣∣∣∣ for all z ∈ D

}
.

If G(z) = z, then R0
H(G) reduces to R0

H . In [29], it has been proved that if

G ∈ K, then R0
H(G) ⊂ SC0

H (see also [23, 25]). The next theorem determines
the radius of convexity of the class R0

H(G) for specific choices of the function
G.

Theorem 3.4. Let rC denotes the radius of convexity of the class R0
H(G) for

G ∈ A.

(i) If G ∈ S, then rC = 3− 2
√
2;

(ii) If G ∈ S∗, then rC = 3− 2
√
2;

(iii) If G ∈ K, then rC = 2−
√
3;

(iv) If G ∈ R, then rC =
√
5− 2;

(v) If G ∈ A with ReG′(z) > 1/2, then rC = 3− 2
√
2.

Moreover, all these results are sharp.

Proof. Let f = h+ ḡ ∈ R0
H(G). Setting Fǫ = h+ ǫg for |ǫ| = 1, note that

Re
F ′
ǫ(z)

G′(z)
= Re

(
h′(z)

G′(z)
+ ǫ

g′(z)

G′(z)

)
≥ Re

h′(z)

G′(z)
−
∣∣∣∣
g′(z)

G′(z)

∣∣∣∣ > 0, z ∈ D.

If G ∈ S, then Fǫ is convex in |z| < 3− 2
√
2 by [31, Theorem 1, p. 32] for each

|ǫ| = 1. By Lemma 2.1, f is convex in |z| < 3 − 2
√
2. This proves (i). The

proof of the other parts is similar. �

3.2. Class W

In [5], Chichra introduced the class W of analytic functions f ∈ A which
satisfy Re(f ′(z) + zf ′′(z)) > 0 for z ∈ D. He proved that the members of W
are univalent in D by showing that W ⊂ R. Later Singh and Singh [36] proved
that W ⊂ S∗. The class W is compact and is closed under convex combination
of its members. Similar to the proof of Theorem 3.3, it can be shown that the
set

W0
H = {f = h+ ḡ ∈ H : Re(h′(z) + zh′′(z)) > |g′(z) + zg′′(z)| for all z ∈ D}.

is the harmonic analogue of W . By Theorem 2.2(iv), W0
H ⊂ R0

H ∩ SS∗0
H . In

particular, the members of W0
H are fully starlike in D by Corollary 2.4. To

determine the coefficient and growth estimates for functions in the class W0
H ,

we need to prove the following simple lemma.

Lemma 3.5. If f ∈ W is given by (9), then |an| ≤ 2/n2 for n = 2, 3, . . . and

−1 +
2

|z| log(1 + |z|) ≤ |f ′(z)| ≤ −1− 2

|z| log(1− |z|), z ∈ D.
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The function

(12) f(z) = −z − 2

∫ |z|

0

1

t
log(1− t) dt = z +

∞∑

n=2

2

n2
zn

shows that all these results are sharp.

Proof. Observe that f ∈ W if and only if zf ′ ∈ R. The proof now follows by
applying [19, Theorem 1, p. 533]. �

Theorem 3.6. Let f = h + ḡ ∈ W0
H where h and g are given by (1). Then

|an|+ |bn| ≤ 2/n2 for n = 2, 3, . . . and

−|z|+ 2

∫ |z|

0

1

t
log(1 + t) dt ≤ |f(z)| ≤ −|z| − 2

∫ |z|

0

1

t
log(1− t) dt, z ∈ D.

In particular, the range f(D) contains the disk |w| < π2/6−1. All these results

are sharp for the function f given by (12). Moreover, the following statements

regarding the class W0
H hold.

(i) The class W0
H is compact with respect to the topology of locally uniform

convergence.

(ii) rS(W0
H) = 1 = rCC(W0

H).
(iii) The class W0

H is closed under convolutions.

(iv) (a) If ϕ ∈ K and f ∈ W0
H , then ϕ∗̃f ∈ W0

H ;
(b) If ϕ ∈ A with Reϕ(z)/z > 1/2 and f ∈ W0

H , then ϕ∗̃f ∈ W0
H ;

(c) If ϕ ∈ W and f ∈ W0
H , then ϕ∗̃f ∈ W0

H ∩ SK0
H .

(v) The class W0
H is closed under convex combinations.

(vi) If f = h+ ḡ ∈ W0
H , then

Reh′(z) > −1 + 2 log 2 + |g′(z)|

for all z ∈ D. The function f given by (12) shows that the constant

−1 + 2 log 2 cannot be replaced by any larger one.

Proof. The growth and coefficient estimates for the class W0
H follow by Lemma

3.5. Since W is a convex set and closed under convolutions (see [37, Theorem
3, p. 150]), the class W0

H is closed under convolutions by Corollary 2.11. This

proves (iii). Since W0
H ⊂ SS∗0

H , (ii) is obviously true. To prove (iv), note that
K ∗ W ⊂ W (by [2, Corollary 3.10]) and if ϕ ∈ A with Reϕ(z)/z > 1/2 and
f ∈ W , then f ∗ ϕ ∈ W (by [37, Theorem 3’, p. 150]). These observations
lead to (a) and (b) by applying Theorem 2.12. Since W ∗ W ⊂ W ∩ K (by
[37, Theorems 3 and 4]), part (c) follows by Lemma 3.2. Theorems 2.8 and
2.13 verify the validity of the parts (i) and (v), respectively. For the proof of
(vi), let f = h + ḡ ∈ W0

H . Then h + ǫg ∈ W for each |ǫ| = 1. Consequently,
Re(h + ǫg)′ > −1 + 2 log 2 in D by [37, Theorem 1(a), p. 146]. In particular,
we obtain the required result. �
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Remark 3.7. Since W ∗W ⊂ K, the convolution of each member of W0
H with

itself is convex in D by Lemma 3.1(a). However, since K is a non-convex set,
it is not known whether W0

H ∗W0
H ⊂ SK0

H in view of Lemma 3.1(b).

3.3. Classes U and V

Let U and V be subclasses of A consisting of functions f of the form (9) that
satisfy

∞∑

n=2

n|an| ≤ 1 and

∞∑

n=2

n2|an| ≤ 1,

respectively. Clearly V ⊂ U . In [13], Goodman proved that U ⊂ S∗ and V ⊂ K.
It is easy to see that U ⊂ R and V ⊂ W . In fact, if f ∈ U is given by (9), then

Re f ′(z) = 1 + Re

∞∑

n=2

nanz
n−1 > 1−

∞∑

n=2

n|an| > 0.

Similarly, if f ∈ V is given by (9), then

Re(f ′(z) + zf ′′(z)) = 1 + Re
∞∑

n=2

n2anz
n−1 > 1−

∞∑

n=2

n2|an| > 0.

The next theorem determines the harmonic analogue of the classes U and V .

Theorem 3.8. The harmonic analogues of the classes U and V are given by

U0
H =

{
f(z) = z +

∞∑

n=2

anz
n +

∞∑

n=2

bnzn ∈ H :

∞∑

n=2

n(|an|+ |bn|) ≤ 1

}

and

V0
H =

{
f(z) = z +

∞∑

n=2

anz
n +

∞∑

n=2

bnzn ∈ H :

∞∑

n=2

n2(|an|+ |bn|) ≤ 1

}
,

respectively.

Proof. Suppose that U ⊲ G0
H . If f = h + ḡ ∈ G0

H where h and g are given by
(1), then h+ ǫg ∈ U for each |ǫ| = 1 so that

∞∑

n=2

n|an + ǫbn| ≤ 1.

On choosing ǫ = ǫ(n) wisely we deduce that f ∈ U0
H . Conversely if f = h+ ḡ ∈

U0
H where h and g are given by (1), then for |ǫ| = 1 we have

∞∑

n=2

n|an + ǫbn| ≤
∞∑

n=2

n(|an|+ |bn|) ≤ 1

so that h+ ǫg ∈ U and hence f ∈ G0
H . Thus U ⊲U0

H . Similarly it can be shown
that V ⊲ V0

H . �
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In view of Theorem 2.2(iv), U0
H ⊂ SS∗0

H and V0
H ⊂ SK0

H . In particular,
the members of U0

H (resp. V0
H) are fully starlike (resp. fully convex) in D by

Corollary 2.4. Also since U ⊂ R and V ⊂ W , therefore U0
H ⊂ R0

H (see also [30,
Corollary 1.4, p. 25]) and V0

H ⊂ W0
H . Using the results of [34] and applying

the theorems of Section 2, we have

Corollary 3.9. Let f = h+ ḡ ∈ S0
H where h and g are given by (1).

(a) If f ∈ U0
H , then

|an| ≤ 1/n, |bn| ≤ 1/n and ||an| − |bn|| ≤ 1/n for n = 2, 3, . . . .

Equality occurs for the functions z + zn/n and z + z̄n/n. If f ∈ V0
H ,

then the sharp inequalities

|an| ≤ 1/n2, |bn| ≤ 1/n2 and ||an| − |bn|| ≤ 1/n2 for n = 2, 3, . . .

hold with the equality occurring for the functions z + zn/n2 and z +
z̄n/n2.

(b) If f ∈ U0
H , then

|z| − 1

2
|z|2 ≤ |f(z)| ≤ |z|+ 1

2
|z|2, z ∈ D.

In particular, the range f(D) contains the disc |w| < 1/2. If f ∈ V0
H ,

then

|z| − 1

4
|z|2 ≤ |f(z)| ≤ |z|+ 1

4
|z|2, z ∈ D,

and therefore f(D) contains the disk |w| < 3/4.
(c) The classes U0

H and V0
H are compact with respect to the topology of

locally uniform convergence.

(d) rS(U0
H) = rCC(U0

H) = rS(V0
H) = rC(V0

H) = rCC(V0
H) = 1 and rC(U0

H)
= 1/2.

(e) The classes U0
H and V0

H are closed under convex combinations.

Avci and Zlotkiewicz [3] investigated certain properties of the classes U0
H and

V0
H (see also [35]). The next theorem investigates the convolution properties of

the classes U0
H and V0

H .

Theorem 3.10. The classes U0
H and V0

H are closed under convolutions. More-

over, we have

(i) U0
H ∗ U0

H ⊂ SK0
H ;

(ii) If ϕ ∈ K and f ∈ U0
H , then ϕ∗̃f ∈ U0

H ;
(iii) If ϕ ∈ K and f ∈ V0

H , then ϕ∗̃f ∈ V0
H .

Proof. The main crux of the proof relies on the observation that if f ∈ V is
given by (9), then

∑∞
n=2

n2|an|2 ≤ 1. Since U and V are convex sets, therefore
it suffices to show that the classes U and V are closed under convolution in
view of Corollary 2.11. Let f , F ∈ V be given by (9). Then

∞∑

n=2

n2|anAn| ≤
1

2

∞∑

n=2

n2|an|2 +
1

2

∞∑

n=2

n2|An|2 ≤ 1



582 S. NAGPAL AND V. RAVICHANDRAN

using the fact that the geometric mean is less than or equal to the arithmetic
mean. This shows that f ∗F ∈ V . The same calculation shows that if f , F ∈ U ,
then f ∗ F ∈ V ⊂ U .

The proof of part (i) follows by Lemma 3.1(b) since U ∗U ⊂ V , V is a convex
set and V ⊂ K. Since the classes U and V are closed under convolution with
convex functions, (ii) and (iii) follows immediately from Theorem 2.12. �

3.4. Class SR

Let SR be the subclass of S consisting of functions f of the form (9) whose
coefficients an are all real. The following theorem determines its harmonic
analogue.

Theorem 3.11. The harmonic analogue of SR is itself.

Proof. Suppose that SR ⊲ G0
H . Then SR ⊂ G0

H . To prove the reverse inclusion,
let f = h+ ḡ ∈ G0

H where h and g are given by (1). Then h+ ǫg ∈ SR for each
|ǫ| = 1 which imply that all the coefficients an + ǫbn are real for each |ǫ| = 1.
But this is possible only if an are real and bn = 0 for n = 2, 3, . . .. Thus g ≡ 0
and f ∈ SR. Hence SR ⊲ SR. �

4. Harmonic integral operators

In the theory of analytic univalent functions, Alexander operator Λ given by
(2) and Libera operator Θ defined by (3) play a crucial role. In this section, we
will introduce and investigate the properties of harmonic Alexander operator
and harmonic Libera operator.

4.1. Harmonic Alexander operator

Definition 4.1. Define an integral operator Λ+
H : H → H by

Λ+
H [f ] = Λ[h] + Λ[g], f = h+ ḡ ∈ H,

where Λ is the Alexander operator defined by (2). We call Λ+
H the positive

harmonic Alexander operator.

Since Λ is linear, therefore so is the operator Λ+
H , that is, Λ+

H [f1 + f2] =

Λ+
H [f1]+Λ+

H [f2] for all f1, f2 ∈ H. The first theorem shows that if a subfamily
G ⊂ S is preserved under Λ, then its harmonic analogue G0

H is preserved under
Λ+
H .

Theorem 4.2. Let I and J be subfamilies of S such that Λ[I] ⊂ J . Then

Λ+
H [I0

H ] ⊂ J 0
H where I ⊲ I0

H and J ⊲ J 0
H .

Proof. Let f = h+ ḡ ∈ I0
H . Since Λ+

H [f ] = Λ[h] + Λ[g] and J ⊲ J 0
H , it suffices

to show that Λ[h] + ǫΛ[g] ∈ J for each |ǫ| = 1. But Λ[h] + ǫΛ[g] = Λ[h+ ǫg] ∈
Λ[I] ⊂ J since I ⊲ I0

H . �

Note that R0
H 6⊂ S∗0

H and U0
H 6⊂ K0

H . Since Λ[R] ⊂ W ⊂ S∗ and Λ[U ] ⊂ V ⊂
K, Theorem 4.2 gives the following two corollaries.
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Figure 1. Graph of the function Λ+
H [K].

Corollary 4.3. Λ+
H [R0

H ] ⊂ SS∗0
H and Λ+

H [U0
H ] ⊂ SK0

H .

Corollary 4.4. The classes R0
H , W0

H , U0
H and V0

H are preserved under Λ+
H .

The Alexander operator Λ provides a one-to-one correspondence between
the classes S∗ and K: f ∈ S∗ if and only if Λ[f ] ∈ K. A similar result
holds for the positive harmonic Alexander operator which provides a one-to-
one correspondence between the classes SS∗0

H and SK0
H : f ∈ SS∗0

H if and only
if Λ+

H [f ] ∈ SK0
H . In particular, the classes SS∗0

H and SK0
H are preserved under

Λ+
H . In fact, the class SC0

H is also preserved under Λ+
H since Λ[C] ⊂ C, a result

proved by Merkes and Wright [21].
Gao [11] proved that if f ∈ R, then Re(Λ[f ](z)/z) > (π2/6) − 1 ≈ 0.6449

(z ∈ D) and the function f given by (11) shows that the constant (π2/6) − 1
cannot be replaced by any larger one. He also showed that if f ∈ A and
Re f ′(z) > (6 − π2)/(24 − π2) ≈ −0.2738, then Λ[f ] ∈ S∗. These results are
generalized in context of positive harmonic Alexander operator.

Theorem 4.5. Let f = h+ g ∈ H.

(i) If f ∈ R0
H , then

Re
Λ[h](z)

z
>

∣∣∣∣
Λ[g](z)

z

∣∣∣∣+
π2

6
− 1 for all z ∈ D.

(ii) If Reh′(z) > |g′(z)| + (6 − π2)/(24 − π2) for all z ∈ D, then Λ+
H [f ] ∈

SS∗0
H .
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Proof. Since R ⊲R0
H , it follows that h+ ǫg ∈ R for each |ǫ| = 1. Consequently

Re

(
Λ[h](z)

z
+ ǫ

Λ[g](z)

z

)
= Re

Λ[h+ ǫg](z)

z
>
π2

6
− 1

for each z ∈ D and |ǫ| = 1. With appropriate choice of ǫ = ǫ(z), we obtain (i).
For the proof of (ii), it is easy to see that (h+ ǫg)′ > (6 − π2)/(24− π2) in

D for each |ǫ| = 1. Hence Λ[h+ ǫg] ∈ S∗, or equivalently Λ+
H [f ] ∈ SS∗0

H . �

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2

-1

0

1

2

Figure 2. Graph of the function Λ+
H [L].

As discussed earlier, we have the inclusion Λ+
H [SS∗0

H ] ⊂ SK0
H . However,

the inclusion Λ+
H [S∗0

H ] ⊂ K0
H is not valid. To see this, note that the harmonic

Koebe function K given by (4) belongs to S∗0
H and

Λ+
H [K](z) =

1

6

[
z(5− 3z)

(1− z)2
− log(1− z)

]
+

1

6

[
z(3z − 1)

(1− z)2
− log(1− z)

]

=
2

3

z

(1 − z)2
+

1

3
i Im

z − 3z2

(1− z)2
− 1

3
log |1 − z|, z ∈ D.

The graph of the function Λ+
H [K] (see Figure 1) shows that the image domain

is not even starlike. In particular, Λ+
H [S∗0

H ] 6⊂ S∗0
H . Similarly, it can be shown

that Λ+
H [K0

H ] 6⊂ K0
H by considering the harmonic half-plane mapping L given

by (5). Note that

Λ+
H [L](z) =

1

2

[
− log(1− z) +

z

1− z

]
+

1

2

[
− log(1− z)− z

1− z

]

= − log |1− z|+ i Im

(
z

1− z

)
.
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Clearly Figure 2 depicts that the image domain Λ+
H [L](D) is not convex.

Although the members of Λ+
H [K0

H ] need not map D onto a convex domain,
its members are necessarily univalent and close-to-convex in D as seen by the
following theorem.

Theorem 4.6. Λ+
H [K0

H ] ⊂ SC0
H .

Proof. Let f = h+ ḡ ∈ K0
H . Then h+ ǫg ∈ C for each |ǫ| = 1 by [7, Theorem

5.7, p. 15]. Consequently Λ[h] + ǫΛ[g] = Λ[h + ǫg] ∈ C for each |ǫ| = 1, as
Λ[C] ⊂ C. Since C ⊲ SC0

H , we have Λ+
H [f ] ∈ SC0

H . �

By Theorem 4.6, Λ+
H [L] is univalent and maps D onto a close-to-convex

domain. Using the technique of shear construction [7, Theorem 5.3, p. 14] and
convolution of harmonic mappings, the authors [28] have further investigated
certain properties of positive harmonic Alexander operator.

The failure of the implication Λ+
H [S∗0

H ] ⊂ K0
H motivates to introduce the

following definition.

Definition 4.7. Define another integral operator Λ−
H : H → H by

Λ−
H [f ] = Λ[h]− Λ[g], f = h+ ḡ ∈ H,

where Λ is given by (2). We call Λ−
H the negative harmonic Alexander operator.

By [10, Lemma, p. 108], it follows that Λ−
H [S∗0

H ] ⊂ K0
H . In particular, the

classes S∗0
H and K0

H are preserved under the operator Λ−
H . Therefore the map-

pings

Λ−
H [K](z) =

2

3

z

(1− z)2
+

1

3
Re

z − 3z2

(1− z)2
− 1

3
i arg(1− z)

and

Λ−
H [L](z) = Re

(
z

1− z

)
− i arg(1− z)

belong to K0
H , where K and L are given by (4) and (5), respectively (see Figure

3).
It is worth to remark that Theorems 4.2, 4.5 and 4.6 continue to hold for

the negative harmonic Alexander operator Λ−
H .

4.2. Harmonic Libera operator

Similar to Definition 4.1, we introduce the notion of harmonic Libera oper-
ator as follows.

Definition 4.8. Define an integral operator ΘH : H → H by

ΘH [f ] = Θ[h] + Θ[g], f = h+ ḡ ∈ H,
where Θ is the Libera operator defined by (3). We call ΘH the harmonic Libera

operator.
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Figure 3. Images of the functions K and L under Λ−
H .

The linearity of the operator ΘH and the inclusions Θ[S∗] ⊂ S∗, Θ[K] ⊂ K,
Θ[C] ⊂ C (see [18]) show that Theorems 4.2 and 4.6 hold for harmonic Libera
operator ΘH as well. Thus we obtain the following theorem.

Theorem 4.9. Let I and J be subfamilies of S such that Θ[I] ⊂ J . Then

ΘH [I0
H ] ⊂ J 0

H where I0
H and J 0

H are harmonic analogues of I and J , respec-

tively. In particular, the classes SS∗0
H , SK0

H and SC0
H are preserved under ΘH .

Moreover, ΘH [K0
H ] ⊂ SC0

H .

Mocanu [24] proved that Θ[R] ⊂ S∗. Therefore, by Theorem 4.9, we have
ΘH [R0

H ] ⊂ SS∗0
H . Unlike positive harmonic Alexander operator (Corollary

4.3), the inclusion ΘH [U0
H ] ⊂ SK0

H is not valid in general. This can be seen by
considering the function f0(z) = z+z̄2/2 ∈ U0

H . Note that ΘH [f0](z) = z+z̄2/3
and the analytic function z + z2/3 6∈ K.

The classes R0
H , W0

H , U0
H and V0

H are also preserved under ΘH . This can be
seen directly from Theorem 4.9 or by observing that we can write ΘH [f ] = f ∗̃φ
where ∗̃ is defined by (10), φ ∈ K is given by

(13) φ(z) = z +

∞∑

n=2

2

n+ 1
zn = −2− 2

z
log(1− z), z ∈ D

and using the convolution results of these classes stated in Section 3. From the
inclusion ΘH [K0

H ] ⊂ SC0
H , it follows that the mapping

ΘH [L](z) =
z

1− z
+
z − 2

1− z
− 2

z
log(1− z)
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= 2Re

(
z

1− z

)
− 2

(
1

1− z
+

1

z
log(1− z)

)

belongs to SC0
H , where L ∈ K0

H is given by (5) (see Figure 4). However,
ΘH [L] 6∈ K0

H , which shows that ΘH [K0
H ] 6⊂ K0

H .

-1 0 1 2 3
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-2

-1

0

1

2

3

Figure 4. Graph of the function ΘH [L].

Recall that a function f ∈ H is convex in the direction of the real (resp.
imaginary) axis if the intersection of the image domain f(D) with each hor-
izontal (resp. vertical) line is connected. For further investigation of results
regarding harmonic Libera operator, we need to prove the following theorem.

Theorem 4.10. Let f = h+ ḡ ∈ H with h(z) + g(z) = z/(1− z) and ψ ∈ K.

If

Re(1 − z)2h′(z) > 1/2 for z ∈ D,

then f ∗̃ψ ∈ S0
H and is convex in the direction of the imaginary axis, where ∗̃ is

defined by (10).

Proof. To apply [28, Lemma 1.1] to the function f ∗̃ψ, we need to show that
f ∗̃ψ is sense-preserving and h∗ψ+g∗ψ is univalent and convex in the direction
of imaginary axis. Since h ∗ ψ + g ∗ ψ = (h+ g) ∗ ψ = z/(1− z) ∗ ψ = ψ ∈ K,
it only remains to show that the dilatation wf ∗̃ψ = (g ∗ ψ)′/(h ∗ ψ)′ of f ∗̃ψ
satisfies |wf ∗̃ψ| < 1 or equivalently Re(1 − wf ∗̃ψ)/(1 + wf ∗̃ψ) > 0 in D. Using
the identity ψ = h ∗ ψ + g ∗ ψ, it is easy to deduce that

(14) Re

(
1− wf ∗̃ψ
1 + wf ∗̃ψ

)
= Re

(h ∗ ψ)′ − (g ∗ ψ)′
(h ∗ ψ)′ + (g ∗ ψ)′ = 2Re

(h ∗ ψ)′
ψ′

− 1.
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Since we can write

Re
(h ∗ ψ)′
ψ′

= Re

ψ ∗ z

(1− z)2
[(1− z)2h′(z)]

ψ ∗ z

(1− z)2

,

where ψ ∈ K, z/(1 − z)2 ∈ S∗ and Re(1 − z)2h′(z) > 1/2, it follows that
Re(h∗ψ)′/ψ′ > 1/2 for all z ∈ D by [32, Theorem 2.4, p. 54]. Hence (14) shows
that the expression Re(1− wf ∗̃ψ)/(1 + wf ∗̃ψ) is strictly positive in D. �

Since ΘH [f ] = f ∗̃φ where φ ∈ K is given by (13), Theorem 4.10 gives the
following corollary.

Corollary 4.11. Let f = h+ ḡ ∈ H with h(z) + g(z) = z/(1− z) and Re(1−
z)2h′(z) > 1/2 for z ∈ D. Then ΘH [f ] ∈ S0

H and is convex in the direction of

the imaginary axis.

The harmonic half-plane mapping L =M +N given by (5) satisfies M(z)+
N(z) = z/(1− z) and Re(1− z)2M ′(z) = Re(1/(1− z)) > 1/2, so ΘH [L] ∈ S0

H

and is convex in the direction of the imaginary axis (which is clearly evident
from Figure 4) by Corollary 4.11. We give another example illustrating Corol-
lary 4.11.

Example 4.12. Consider the harmonic function Ψ(z) = ψ1 + ψ2 ∈ H where

ψ1(z) =
1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z
and ψ2(z) = −1

4
log

(
1 + z

1− z

)
+

1

2

z

1− z
.

In fact, Ψ ∈ K0
H and is constructed by shearing the conformal mapping l(z) =

z/(1 − z) in the direction of imaginary axis with dilatation wΨ(z) = z. Note
that Re(1−z)2ψ′

1(z) = Re(1/(1+z)) > 1/2 for z ∈ D. Hence, by Corollary 4.11,

ΘH [Ψ] = Θ[ψ1] + Θ[ψ2] ∈ S0
H and is convex in the direction of the imaginary

axis, where

Θ[ψ1](z) =
1

2
log

(
1 + z

1− z

)
+

1

2z
log(1− z2)− 1− 1

z
log(1 − z)

and

Θ[ψ2](z) = −1

2
log

(
1 + z

1− z

)
− 1

2z
log(1 − z2)− 1− 1

z
log(1− z).

The images of radial segments and concentric circles inside D under Ψ and
ΘH [Ψ] are shown in Figure 5.

Example 4.13. If K = H + G ∈ S∗0
H is the harmonic Koebe function given by

(4), then

ΘH [K] = Θ[H ]+Θ[G] =
2

3
Re

(
3z − 1

z(1− z)2
+

1

z
− 1

)
− 2

z

(
z

1− z
+ log(1− z)

)
.
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Figure 5. Images of the functions Ψ and ΘH [Ψ].
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Figure 6. Graph of the function ΘH [K].

Figure 6 clearly depicts that the image domain ΘH [K](D) is not starlike. This
shows that ΘH [S∗0

H ] 6⊂ S∗0
H .

However, it can be shown that ΘH [K] ∈ S0
H and is convex in the direction

of the real axis. To see this, note that ΘH [K] = K ∗̃φ where φ ∈ K is given by
(13). Since H −G = z/(1− z)2 and zφ′ ∈ S∗ is convex in the direction of real
axis (see Figure 7(A)), it follows that H∗φ−G∗φ = zφ′ is univalent and convex
in the direction of real axis. Moreover, the dilatation wK∗̃φ = (G ∗φ)′/(H ∗φ)′
of K ∗̃φ satisfies

Re

(
1 + wK∗̃φ

1− wK∗̃φ

)
= 2Re

(H ∗ φ)′
(zφ′)′

− 1 = 2Re
φ ∗H ∗ k
φ ∗ k ∗ k − 1

which is clearly positive in D (the dashed line in Figure 7(B) represents the line
Re z = 1/2), where k(z) = z/(1 − z)2 is the Koebe function. By [28, Lemma
1.1], ΘH [K] = K ∗̃φ ∈ S0

H and is convex in the direction of the real axis.

We close this section with the following remark.
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k)/(φ ∗ k ∗ k)

Figure 7. Mapping properties of the function φ.

Remark 4.14. As discussed earlier, the classes S∗0
H and K0

H are not preserved
under ΘH . Analogous to Definition 4.7, if we define another notion of harmonic

Libera operator Θ̃H : H → H by Θ̃H [f ] = Θ[h] − Θ[g] where f = h + ḡ ∈ H
and Θ is the Libera operator defined by (3), then also Θ̃H [S∗0

H ] 6⊂ S∗0
H and

Θ̃H [K0
H ] 6⊂ K0

H . This can observed by Figure 8 which depicts the graph of the
function

Θ̃H [L] = Θ[M ]−Θ[N ] = 2i Im

(
z

1− z

)
+ 2

(
1

1− z
+

1

z
log(1− z)

)

where L is given by (5). The image domain Θ̃H [L](D) is not even starlike.
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Figure 8. Graph of the function Θ̃H [L].
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