• Title/Summary/Keyword: integral equation formulation

Search Result 105, Processing Time 0.036 seconds

3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept (Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석)

  • Park, Min-Cheol;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

The Exact Formulation of the Green Integral Equation Applied to the Radiation-Diffraction Problem for a Surface Ship Advancing in Waves (파중 전진하는 선체에 의한 방사파-산란파 문제의 해법에 적용되는 Green 적분방정식의 정확한 도출)

  • 홍도천
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.23-28
    • /
    • 2000
  • The Green integral equation for the calculation of the forward-speed time-harmonic radiation-diffraction potentials IS derived. The forward-speed Green function presented by Brard is used and the correct free surface boundary condition for the Green function is imposed. The cause of the mistakes in the existing Green integral equation is also pointed out.

  • PDF

Elastic Analysis of Unbounded Solids Using a Mixed Numerical Method (혼합 수치해석 방법을 이용한 무한고체의 탄성해석)

  • Lee , Jung-Ki;Heo, Kang-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions.

  • PDF

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (특수 적분해 경계요소법에 의한 2차원 및 3차원 동적 탄소성 응력 해석)

  • Kim, Jae-Suk;Owatsiriwong, Adisorn;Park, Kyung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

A New Integral Variable Structure Controller For Incorporating Actuator Dynamics

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.97-102
    • /
    • 2006
  • In this paper, a new simple integral variable structure controller is designed with incorporating the actuator dynamics. The formulation of the VSS (variable structure system) controller design includes integral augmented sliding surface and the dynamics of the actuator expressed as the state equation. An illustrative example is given to show the effectiveness of the developed controller.

  • PDF

Integral equation formulation for electromagnetic coupling through an arbitrarily shaped aperture into a parallel-plate waveguide (임의 형태의 개구에 의한 평행평판 도파관으로의 전자기적 결합 문제 해석을 위한 적분 방정식 방법)

  • Lee, Young-Soon;Lee, Chang-Won;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.25-35
    • /
    • 1995
  • An analysis method of electromagnetic coupling through an arbitrarily shaped aperture on the upper wall of parallel-plate waveguide, when excited by an electromagnetic plane wave from outside, is considered. The mixed-potential integral equation, in which Green's functions are expressed in a computationally efficient closed form by using the Prony's method and the Sommerfeld identity, is formulated. Expanding the unknown equivalent magnetic surface current in terms of two-dimensional rooftop-type basis functions and choosing razor testing, the integral equation is reduced to a linear algebraic equation, which is solved. The results are compared with the previous results. Fairly good agreements between them are observed.

  • PDF

Analysis of Perfectly Conducting Body of Revolution (BOR 구조 완전도체의 해석)

  • 이직열;정구철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.225-230
    • /
    • 1994
  • EFIE`s(Electric Field Integral Equations) are widely used in formulation of electric field problems and these equations are analyzed by several numerical method. In formulation of EFIF by forcing the tangential component of electric field on the perfect conducting body be zero, we can obtain equation with a kernel that has a logarithmic singularities. In this paper, an integral equation is presented which can be used for perfect BOR(Body of Revolution) objects and this can be more simplified for straight wire problem. As examples, monopole antenna which is driven by coaxial cable and scattering problems are considered.

  • PDF