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The Exact Formulation of the Green Integral Equation
Applied to the Radiation—Diffraction Problem for
a Surface Ship Advancing in Waves
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Center for Advanced Transportation Vehicles, Chungnam National University
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ABSTRACT: The Green integral equation for the calculation of the forward-speed time-harmonic radiation
-diffraction potentials IS derived. The forward-speed Green function presented by Brard is used and the correct free
surface boundary condition for the Green function is imposed. The cause of the mistakes in the existing Green

integral equation is also pointed out.

problems yet meanwhile strip methods are employed for
linear seakeeping design(Gerritsma and Beukelman 1967,
Ogilvie and Tuck 1969, Salvesen et al 1970, Newman
and Sclavounos 1980). The time-harmonic
forward-speed Kelvin-type three-dimensional Green
function(denoted Brard’s Green function hereafter) has
already been presented(Brard 1948) and various
three-dimensional numerical methods to solve a source
integral equation using this Green function have been
followed to calculate the motion of surface ship
advancing in waves(Chang 1977, Bougis 1980, Inglice
and Price 1981, Chan 1990). The recent drastic
improvement of computer technology has removed the
restriction on the memory space and computing time.
But no serious comparative studies on their numerical

1. Introduction

Nowadays, the three-dimensional boundary element
methods in the frequency domain are in common use to
calculate the motion of freely floating zero-speed
surface ships in waves and wave loads as far as
boundary conditions are linearized. The added mass and
wave damping coefficients in the equation of motion of
the zero-speed surface ship are calculated directly using
the time-harmonic potential on the hull. The unknown
radiation and diffraction potentials can be obtained from
the solution of the improved Green integral equation
using Kelvin-type Green function for all freguencies
(Hong 1987).

Unfortunately, the three-dimensional solution techniques
for the ship motion problem with forward speed in the
frequency domain, which is more important in the field

results were carried out. It seems that all these
three~dimensional methods in the frequency domain are
not conclusive yet. Bougis presented also a Green

of navel hydrodynamics, are not applicable to practical . ) ) )
integral equation where the unknown is the potential



while the unknown in the source integral equation is
the source density.

In this paper, the Green integral equation with Brard’'s
Green function has been reviewed and revised through
rational treatment of the free surface integral associated
with the Brard number(Brard 1972).

2. Linearized Boundary—Value
Problem in the Frequency Domain

A ship is moving with mean forward speed U in the
free surface of deep water under gravity and in the
presence of plane progressive sinusoidal incident wave
of small a,. Let

amplitude oxyz be a Cartesian

co-ordinate system attached to the mean position of the
ship, with =z vertically upward , x in the direction of
forward motion and o in the mean waterplane Wop
The ship performs simple harmonic oscillations of small
about its position  with

frequency @ which is equal to the encounter frequency

amplitude mean circular
of incident wave. It is assumed that the disturbance of
the free surface due to the forward motion
small. It can be understood that the forward speed

should be low for full-shaped ships and relatively high

1s also

for fine-shaped ships.

With the usual incompressible,
inviscid fluid and irrotational flow without capillarity,
the fluid velocity can be given by the gradient of a

assumptions of the

velocity potential ¢ which satisfies the Laplace
equation,

vi=0 (1
in the fluid region.

Under the assumptions given above, ¥ at P in the
fluid region can be decomposed as follows:

O(P, )=0s(P)+Re{¥(P)e ™) 2

where ®; denotes a steady potential known as the

Neumann-Kelvin  potential, Y a complexed-valued
unsteady potential and © the encounter frequency of the

incident wave. The velocity potential of incident wave is

as follows:

0, = Re{¥e """} 3
where

¥, = _% kolz+ilxcosP+ysinB)] (4)
for

w=(0,~-Uk,cosB)>0 (4a)

and
¥, = __gao;g k,lz-ilxcosP+ysinB)] )
for
0=(Uk,cosB~0,)>0 (5a)
where g is the gravitational acceleration, J the angle

between the phase velocity of the incident wave and the

forward velocity of the ship, w©, 1is the circular
02
frequency of incident wave and ko= ?0 the

wavenumber expressed in a space-fixed co-ordinate

system o xy z given as follows:

x=x+Ut, vy=y, z=2z v (6)
The equation of the mean free surface is
z=0 (7)

and the linearized free surface boundary condition for

® on z=0 1is as follows:
el

0 40 2, 9 4
L7 ~Umpy ) rep519=0

Substitution of (2) to (8) yields the following free

on z=0 )

surface  boundary conditions for 9 and '}
respectively :
2_9° ) _ -
LU 522 +gaz]¢s—0 on z=0 (9)
[(-io-UL) e g218-0 on 2-0 (10)
The forward speed U is of O(1). Under the
assumption of small amplitude oscillation, the

—
displacement vector A(M ) of a point M on the
wetted surface S of the ship in its mean position is of
O(e) where ¢, being as small as the wave slope. is

the measure of smallness in the present study. The

expression of Z(M ) is as follows:

AM)=Re{a(M)e ™}, MEeS (11)

M) = k'Zi]akZNﬁx'éM, MeS (11a)
6

8= Sa ey (11b)

where q,(k=1,2,,,6) denotes complex valued

amplitude of surge, sway, heave, roll, pitch, yaw

respectively and O the center of rotation of the ship.
It should be noted that the time-harmonic quantities
correspond to the real part of terms involving e “iot

and it will not be shown unless its presence is

necessary.

Applying impermeability condition on S, the following



body boundary condition can be found:
(n +8x7n) - Vidg+¥)
=(n+8xn) - (Ue -iva)

-
where n denotes a unit normal to S directed into the

. - - .. -> = ->
fluid region, at its mean position and (n+8Xxn) the

Taylor expansion of the normal at its instantaneous

position. The above condition can also be found from its

alternative expression given by Timman and

Newman (Timman and Newman 1962).
Assuming ¢, is of O(g) and neglecting second-order

quantities, the following linearized body boundary

condition for ®; and ¥ can be found respectively:

ad.

a; =Un, on S (13)
alp _ i >
—ﬁ—-lma-n+U(a5n3—a6n2) on S (14)
With these linearized boundary conditions on S and on
z=0, the unsteady potential problem and

Neumann-Kelvin problem can be solved independently
and the latter will be dropped from the present study.
The unsteady potential ¥ can further be decomposed as

foliows:
V=Y +¥ 4 ¥, (15)
where the sum of Y, and Y, is known as the

diffraction potential and Y, the radiation potential which

can be decomposed as follows:

6

L —imgakq’,‘— Ulag¥;-as¥y) (16)
Then the body boundary conditions for
¥, (k=12,,7) are

oY

—%=n, on S, k=123 (17a)

an =(ej_3>< OM)-n on S,

0 (17b)
for j=4,5,6
3%, 9Y,
h - an on S (18)

The potentials ¥,(k=1,2,,,7) also satisfy the free

surface boundary condition given by the equation (10):

a

[(—iw—Uﬂ‘ )2 +g—aa';]‘l'k=0 on F,

(19)
for k=1,2,,,7

It is also assumed that they vanish at infinity as lw
-

where r” denotes the distance from the ship. They

must also satisfy the radiation condition presented by
Brard(Brard 1948).

Here, the potential
¥.(k=12,7)

Green integral equation.

boundary-value problems for

will be solved by making use of the

3. Brard’s Green Function

The Green function derived by Brard(Brard 1948)

characterizes the potential induced at P where zp<0,
M where

zm <Q advancing under the free surface with uniform

by a pulsating source of unit strength at

velocity U—e_;. The point M 1is the so-called source

point and P the field point. It has been obtained as

follows:
G(PM,t) = Re{G(P,M)e ™"} (20)
where
G(PM) =Go(PM) -G (PM)+G;(PM) 21
where
Go(PM)= -1 (22)
CA am r
11

G(PM)= - 7 (23)
G/(P.M)= -47117<H,+H2) (24)

+% - B

_ 1 T .

Hl—f_l fo e gk dk (25)

2

»% -

- 1 o

H,= f_i defo Do gk dk (26)

2

) 1
r={ (xp-xp) t (Yp=ya) + (zp=zp)°) (27
1
= {(XP‘XM)2+()/p_yM)2+(ZP+ZM)2} ’ (28)
D, = (0-Uk cosB)*- gk +iv(v-Uk cos8) (29)
D,=(0+Uk cosB)? - gk +iv(0+ Uk cos8) (30)
U=kizptzpy +il(xp-xy)cosB
(31)

+(yp—yn)sinBl}

where V is an artificial damping parameter infinitely

small, positive, which will determine the path of

integration in the complex plane K associated with the

variable k shown in the expressions of H, and H..



The function G, is the Rankine-type Green function

which is singular when P=M and regular otherwise.
The function G; 1is regular for zp<0. The function
Gy is regular for zp<0 and 2z, <0 or z,<0 and

4 <0 and 1s not defined when zp=2z,=0 .

Brard’'s Green function satisfies the following
equations:
VyG(PM) =0 for zp<0 and z,<0
(32)
and P=M
VLEGIP,M) =0 for zp<0 and zy<0
(33)
and P=M
. 2 2 d _
[A(*zm—U——a ) o+ g 1G(P,M) =0
Xp ozp (34)
for zy <0 and zp=<0
, d 2 d _
[(-fw+U—5""—)" +g 1G(P,M) =0
aXM aZM (55)
for zp<0 and zy<0

It has been shown by Brard that the radiation condition
for G(P,M)

parameter is present in the denominators D; and D,.

is satisfied when the artificial damping

In fact, the so-called damped free surface condition

given below was used to construct Brard’s Green
function G(P,M):
a0 2 P d
[(-iw Uax,,) +v(-{0 Uaxp)
d _
+gaZP]G(P,M)—0 (36)

for zy<0 and =zp<0

Since the Green function G(P,M) 1is of O(%— ), it

tends to zero as r — <o,

The condition (35) is the so-called adjoint free surface
G(P,M)
free surface condition (34) according to the reasoning
given by Brard(Brard 1972).

The integrations with respect to k in H; and H,

condition for and can be derived from the

can be done analytically by making use of the complex
E(0)

in his report on the radiation problem of a

exponential integral as shown by Hong(Hong

1978)
cylinder advancing under the free surface. This method
of integration was generalized by Guevel(Guevel et al.
1979) three-dimensional
radiation—diffraction problem with forward speed by
Bougis(Bougis 1980).

and was applied to the

4. Green Integral Equation

When a ship is present in the free surface, the fluid
region D° is bounded by the mean wetted surface of
the ship S, the outer free surface F°=F-W, where

Wp is the waterplane at its mean position and some
and C
denote the closed intersection contours of F with S
and S%
potential ¥

arbitrary surface S” at infinity. Let C

respectively. Applying Green'’s theorem to the

and the Green function G over the fluid

region D°, the following integral identities can be
obtained:
oG (P M)
Y(P) Y
( ffb UF"uUs "™ [ (M)

(37

O¥M) -~ par)lds, for

on ' Zp<0

=
where n denotes a unit normal to the boundary

surface directed into the fluid region D°.

Since ¥ and G tend to zero as % the integral
r

over S” vanishes in the limit and we have

Y(pP) ff[‘l‘(M) aG(PMM)
(38)
- DYM) Gop s 1S for <0
N
where
ff [¥(M) aG(PMM)
(39
__QM/I_)GUJ,Mﬂds, zp <0

anM
Substitution of the free surface condition (19) and the

adjoint free surface condition (35) into the normal

derivatives of ¥ and ( in (39) respectively, yields

Ig=1,+1Ig, (40)
where
o oG (P.M)
I, = zlvffpv[q‘(M) FE
+—%G(P,M)]ds
xm (41)
= —2ivf
for zp<0
and



2
A A A e o
' M M (42)
al;i(]v“G(PM)]cls for zp,<0

The v in (41) is a non-dimensional parameter known
as the Brard number.

y= U (43)
g

Application of Stokes's theorem to (41) yields

1= -2iv f(ﬁ_‘l’(M)G(P,M)dyM

(44)
+20v f(“l’(M YG(P.M)dyy, zp<0

where the positive directions around both C and C%
are defined counterclockwise when one would see them
from above the free surface.

The line integral of the product ¥ and & along C”

vanishes in the limit since both ¥ and G tend to zero

1
as —= and we have
r

I,=2iv fc‘l’(M)G(P,M)dyM, 2p <0 (45)

Similarly, application of Stokes’s theorem to (42) yields

2
Tin = - f[‘l’(M) aGa(fM)
g M (46)
- OYM) Gip A ldyy, zp <0
axM
Substitution of (45) and (46) into (40) yields
I£= 2iv fc'l'(M)G(P,M)dyM
2
- (o) LCEM) @7
g C axM
-0XM) G p ) ldyy for zp<0
Xm
Substituting the final expression of If into the
integral relation (38) and taking account of the potential
jump across S, we have the following integral
relations:
dG(P.M)
ctpy= - [ [ 1) T
9YM) cp ary)ds
an/\,
- 20y f("l’(M)G(P,M)dyM (48)
U dG(P.M)
o f[m(M) .
0¥ M)
3 X1 G{(P,M)ldyy

where the value of ¢ is 1, % and O according as

the field point P is inside D“ on S and outside D°.
Knowing the body boundary condition on S, the
following Green integral equation for ¥ can be found

when P is on S:

1 0G(P.M)
S 4 o [ [von S g
£ 24V f(&(M)G(P,M)dyM
2
M (49)
ay¥
a;M) G(P,M)dy,,
- [ “"M’ G(P,M)ds
for PES
The derivative of ¥ with respect to x, can be
decomposed as follows:
d¥ (M) | o¥Y(M) — GT(M)T*
- 1 Ny M
dxp ony a1y 50)
0¥ M) — -
+ FE3 Tul, MES

where 7 is a unit vector tangent to C whose direction
along which one, traveling in D° would proceed in
keeping W, to his left, is defined positive and T a unit
vector tangent to S forming a right-hand vector triad
T=Ixn.

Substitution of (50)

%m(m +ffs'1’(M)

into (49) yields

BC(PM)
ny

L 20y f“l‘(M)G(P,M)dyM

0G(P.M)
aXM

0¥ (M)

:fs 0Ny

v QY (M)
g C anM

for PES

Bougis presented a Green

G(P,M)ds

G(P.M)e, - npydyy (51)

integral equation for Y
(Bougis 1980). But, in the Green integral equation by
Bougis, the sign before the line integral associated with
the Brard number is minus since he used minus sign
before the term involving U in the expression of the

adjoint free surface condition (35). In fact, he used the



following condition:

. d 2
- - J7
[(-iw - U Tx0 )
0 _ o
+g azM]G(P,M) =0 (52)
for zp<0 and zy<0

It is evident that Brard’s Green function does not
satisfy the condition (52) which is different from the
adjoint free surface condition defined by (35).

Besides, he had to assume that

ff 0¥ (M)
JJe

G(P,M)ds=0 for
9 Xy
in order to obtain the line integral associated with the

Zp<0 (53)

Brard number. There is no reason that the equation
(53) holds. Thus his Green integral equation is wrong.
More recently, the same mistake has been made by
Hong in his study on the two-dimensional radiation
problem of a cylinder advancing on the free
surface(Hong 1995).

The equation (51) is the exact Green integral equation

which contains the correct boundary conditions.
5. Conclusion

The Green Integral equation for the forward-speed
radiation—diffraction problem of a surface ship has been
derived with correct boundary conditions on the free
surface. The cause of mistakes in the existing Green
integral equation is also pointed out.

integral

Numerical validation of the present Green

equation will be followed soon.
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