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Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress
Problems by Particular Integral Boundary Element Method
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Abstract

The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is
presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the
particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The
Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is

used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy
of the present formulation.
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1. Introduction

The Boundary Element Method(BEM) has developed
into a powerful numerical method for solving inelastic
transient dynamic stress problems(Banerjee, 1994
Banerjee and Butterfield, 1981 Beskos, 1995, 2003).
Because of acceleration and initial stress terms in the

governing equation, the direct application of the BEM

to the inelastic transient dynamic stress problems
generates domain integrals. By treating both plastic
stresses and inertial forces by internal cells, the
domain BEM technique was applied for 2D and 3D
inelastic transient dynamic problems(Carrer and
Telles, 1992; Coda and Venturini, 2000 Hatzigeorgiou
and Beskos, 2002).

Some attempts have been made to eliminate the
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acceleration volume integral. The time-domain BEM
formulation, using the elastodynamic fundamental
solution and time-stepping techniques, has been
developed for 2D and 3D inelastic transient dynamic
stress analyses(Banerjee et al., 1989: Ahmad and
Banerjee. 1990: Israil and Banerjee, 1992). Kontoni and
Beskos(1993) proposed the volume integral conversion
method for 2D inelastic transient dynamicstress problem
by transforming the inertial volume integrals into surface
integrals.

This paper presents the particular integral
formulation for 2D and 3D inelastic transient dynamic
stress problems. The particular integral method is a
classical technique, obtaining the total solution as the
sum of a complementary solution for the homogeneous
part of the differential equation and a particular solution
for the total governing inhomogeneous differential
equation(Yang et al., 2002: Park and Banerjee, 2002a,
2002b, 2006, 2007).

In order to approximate the acceleration term of the
inhomogeneous equation, a global shape function is
considered and then the particular integrals for
displacement and traction rates are derived for 2D and
3D formulations. The solution of elastostatic equation
is used as the complementary solution. The Houbolt time
integration scheme is used for the time-marching
process. A standard predictor-corrector method,
together with the Newton-Raphson algorithm for plastic
multiplier(Gao and Davies, 2002), is used to solve the
system equation. The numerical results for example
problems are compared with those by ABAQUS/
STANDARD(ABAQUS Inc., 2004) to demonstrate the

validity and accuracy of the present formulation.

2. Particular Integral Formulation

The governing differential equation for inelastic
transient dynamic stress analysis of a homogeneous,
isotropic body in the absence of body force can be

written in an incremental form as
(A+ ) Au, ; +pAu, ;= p Aii,+ A0, (1)

where ¥, is the displacement, #, is the acceleration,
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0, is the initial stress, p is the mass density, and are

Lame's constants, A denotes incremental quantity,
commas represent differentiation with respect to
spatial coordinates, and 4, ;j=1,2(3) for two(three)
dimensions. The incremental initial stress rate is

defined as
Acj = Ao - Ao (2)

where Ac; =Dy, Ag,, Aol =Dj Ag,, £y is the
strain and Dj,, Dy are the elastic and elastoplastic

constitutive tensors respectively. The solution of Eq.

(1) can be represented as a sum of complementary

function u; satisfying the homogeneous equation

(A+p)Aus  + pAuf ;=0 (3)

N/

and particular integral u; satisfying the inhomo-

geneous equation

(A+p)Au? , + uAuf, = pAii; + Aoy 4)

¥/

where superscripts ¢ and p indicate complementary
and particular solutions respectively. Then the total
solutions for displacement, traction and stress rates

can be expressed as

Ay, =Auf + Au? (5a)
At, = Atf + AP (5b)
Ao, =Ao;+Ac) (5¢)

where ¢, 0, and #/, of are the complementary

functions and particular integralsfor traction and

stress rates, respectively.
2.1 Complementary solutions

The boundary integral equation related to the
complementary functions, #; and ¢, can be written

as(Banerjee, 1994)

C, () A ()= [ [G, (x&)Ars (x) - F (x. &) A (x)] aS(x)
(6)



F,are the fundamental solutions for
0 and 1/2

depending on the point & being in the interior,

where G,

elastostatic equation and C,(§) =1,

outside or on a smooth boundary point respectively.
The complementary function for the interior stress
rate can be written by using the stress-strain

relationship as(Banerjee, 1994)

aos(&)= [ (G5 (x.8) ar ()~ Fy(x.)aui () Jastx) ()

where Gy, Fg are the kernel functions for

stresses.
2.2 Particular integrals

Eq. (4) contains acceleration term as well as the
initial stress rate term. In order to eliminate the
domain integrals due to the acceleration term, the
concept of global shape function can be used. By

introducing the global shape function C,(x,£,), the

acceleration iii(X) can be approximated as

)=, (x&,) A4 ) ()

n==f

where ¢, (%,) is the fictitious function.

Substitution of Eq. (8) into Eq. (4) gives

(+ 1) At (x) + 1 At?, (x)
-pgczk(x,a,m (6,)+A0?,(x) ©

Then the corresponding particular integrals for
displacement, stress and traction rates can be

obtained using the following relations

A (x)= YU, (%,8,) Ad &) (10)
A?(x) =38, (68,) A, €,) (11)
AP (x) = 3T, (x,8,) A &) (12)

n=l

The details of the derivation for particular integrals

ZAAA » Adisorn Owatsiriwong + 214 &
related to the acceleration term is given in Appendix.

3. Numerical Implementation

The boundary integral equation (6) and stress

equation (7) can be written in matrix form as

cl{ar}-[Fl{aw}=0 (13)

{ac }=[c {ar}-[Fo){au} (14)

Considering the total solutions of Eq. (5) the
complementary functions in Eqs. (13) and (14) can be

eliminated as

[61{ ar}- [FI{ au=[G){ae” }- [Fl{ au? }+ [ M [{ao” }
(15)

fao}=[c"J{ad-[Fol{au}-[ao {ao" }

~(leefarr }-1 7o [{aw )+ {ac?} (16)

[M] and [M°] are the matrices related to the

volume integral of the initial stress term, such as
IB,@ g)ac (x)av (x) (17)
7]= [ 85, (x8)A0; (X)av (x)+ I,Aa00E)  (18)
where

Bikj (X, é) (Gy k + lec i ) (19)

The details of Egs. (17)~(19) can be found in the

reference(Banerjee, 1994).
If a finite number of &, are chosen, the particular

integrals for displacement, traction and stress rates

can be written as

{aur}=u [{ag } (20a)
{ar}=[r Hag } (20b)
{aor}=[s Has } (20¢)

Considering the fictitious nodal values as

{ag J=lc 1" {aii} @1

one can obtain the following equations
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[G{ar}-[F){au}=[N){aii}+ [M]{ac°} (22)

{act=|Go[{ar}-F [{au}-| N7 [{i}- v Haoe}
(23)

where

(W =([6l[r J-[#][v ])[e T (24)

[vel=(lee]lr J-lPe]lv ) ' @9

Several time integration schemes have been
proposed to deal with equations of the type of Eq. (22)
in FEM. In this study, the Houbolt method is used
such that

. 1
Atiy,n, = F ( 2 Auppp =5 Au, +4 Au,_y - Aur—ZAt) (26)

Considering the equilibrium equation (22) at time

t+At one can obtain

( 2 INlF ]j {8u,,, =[G]{ar), +
1

= [N o), -, +{ad o, )-[M1{ao7},

27

To solve the system equation (27), boundary
variables as well as displacement at interior points
are simultaneously treated as the unknown variables.

So Eq. (25) is rewritten as

- [G]bb [F]bb [0 [U ]b 4
[¥,., -U[G],J [T]b_[[F],,, [Iﬂ {[U ]’D[C lou
(28)

where [I]is idéntity matrix, subscript Idenotes

interior values and subscript bindicates boundary
values.

By substituting the boundary conditions at time
t+At and taking all the unknowns to the left-hand
side, the final system of equation can be rewritten as

4] {ax},y, = {80}sa, - [M1{A0°},.., (29)

where X is unknown vector of displacement and

traction including displacement at interior points, Y
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is a known vector and A4 is the coefficient matrix,
which is obtained by rearranging Eq. (27) so that the
known {Aujt+a and {At}t+a values form one vector {A
v}t+x and the unknown values another vector {Ax}t+at.

In a similar way, the combined form of the stress at

boundary nodes and interior points can be written as
{Ao-}b} [Ga]bb [Fa]bb
=117 WA, = (.17 [aul,
{{AO-}I [G ]11; b [F ]Ib ’

(bl el e, ), o
(30)

Traction recovery method(Banerjee, 1994; Gao and
Davies, 2002) is commonly used to evaluate the

boundary stress and so the explicit calculation of
[G“]b,, and [F"],,b is not needed. Then Eq. (30) can be

rearranged as

act=[47)iaxt+{aye}-[m]){ao} (31)

where ¥ is the unknown variables obtained by
solving Eq. (29), y°denotes the vector of known
boundary values. Egs. (29) and (31) are nonlinear
system due to the unknown initial stress vector ¢°.
In this study, the Newton-Raphson algorithm for the
plastic multiplier(Gao and Davies, 2002) is employed

for elastoplastic solution. The detailed exaplanation

can be found in the reference(Gao and Davies, 2002).
4. Numerical Examples

In order to test the wvalidity of the present
particular integral formulation and the resulting
computer program in both two and three dimensions,
four examples of application are solved. The results of
displacement history are compared with those
obtained from ABAQUS/STANDARD(2004). While the
present program can be used for the different material
models, such as Tresca, von Mises, Mohr-Coulomb
and Drucker-Prager models, only the von Mises model

is considered.



Figure 1 Modeling mesh(Example 1)

a5

rrrrrrr ABAQUS 2D --+---- ABAQUS 3D e TS 2D —7S3D

94

ent
o
w

by //\

A

A

placemn

Ois;
o
N

: \ )
\/

[} 4.002 0.004 0.006 0.008 081 0012
Time

Figure 2 Radial displacement history at the inner
surface(Example 1)

4.1 Example 1: A thick-walled cylinder
subjected to internal pressure

The first example considers a thick-walled circular
cylinder subjected to a suddenly applied uniform
internal pressure(p=185). The inner radius a=100
and the outer radius b= 200. The body is modeled by
using 96 quadratic boundary elements and 36
quadratic volume cells in 3D analysis(Fig. 1), while
32 quadratic boundary elements with 64 quadratic
volume cells are used in 2D analysis. In 3D analysis,
the thickness of cylinder is taken to be 25 unit. The
material properties are: E=210000, v =0.3, o, =355
and £ =785x10°. The time step Atis 1x107
Employing symmetry condition, only the positive
octant of the cylinder is investigated, and symmetric
constraints are imposed at the cutting face as the
roller boundary condition. Numerical results for radial
displacement history at the inner surface are shown in
Fig. 2 for both 2D and 3D analyses. Generally, good
agreement between the present study(TS) and
ABAQUS can be seen for both 2D and 3D analyses.
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Figure 3 Modeling mesh{(Example 2)
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Figure 4 Displacement history at point A(Example 2)

4.2. Example 2: A rectangular strip with
hole subjected to uniaxial tension

The second example considers the analysis of a
rectangular strip with hole. Uniform tension(p=7.5
x10°) is suddenly applied along the free end. Due to
the symmetry, only a quarter of the model is analyzed
(Fig. 3), and symmetric constraints are imposed at the
cutting face as the roller boundary condition. The
modeling mesh contains 32 quadratic boundary
elements with 60 quadratic volume cells(2D), and152
quadratic boundary elements with 60 quadratic volume
cells(3D). The material properties are: E = 21x10°, v
= 0.3, oy = 235x10", E =5x10" and £ =7.85x10".
The time step Az is 4x10°. Fig. 4 shows the numerical
results of displacement history at point A. Good
agreement of the results can be seen for 2D and 3D
analyses, while apparently different results from

ABAQUS can be noticed in elastoplastic range.

4.3 Example 3: A Cantilever beam subjected
to shearload
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Figure 5 Modeling mesh(Example 3)
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Figure 6 Vertical displacement history at point
A(Example 3)

The third example considers the analysis of a
cantilever beam subjected to suddenly applied surface
traction(p=25) at the free end(Fig. 5). The modeling
meshes consists of 286 quadratic boundary elements and
80 quadratic volume cells(3D), and 30 quadratic
boundary elements and 50 quadratic volume cells(2D).
The material properties used are: E=200000, v =0.3,
0y =400 and P =7.85x10°. The time step Ar is taken
to be 1x10 ",

Fig. 6 shows the results of vertical displacement
history at point A. Generally, good agreement between
TS and ABAQUS can be seen for both 2D and 3D analyses.

4.4 Example 4: A hollow sphere subjected
to internal pressure

The final example considers a thick-walled hollow
sphere subjected to a suddenly applied uniform internal

pressure(p="7.5). The inner radius a=1.0 and the outer

380 srEAMATFABEE =28 H21# H45(2008.8)
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Figure 8 Radial displacement history at the inner
surface(Example 4)

radius b=2.0. The modeling mesh contains 192 quadratic
boundary elements with 192 quadratic volume cells(Fig.
7). The material properties are: E=100, v =0.3, oy =10
and £ =0.1. The time step At is taken to be 2.5x10"°.
Symmetric boundary conditions are employed and so only
the positive octant of the hollow sphere is investigated.
While somewhat different between TS and ABAQUS
results can be seen in Fig. 8, the reason of the difference
may be the use of different time integration schemes
in the BEM and the FEM analyses.

5. Conclusions

The application of BEM to 2D and 3D inelastic
transient dynamic stress problems is described by using

particular integrals. The elastostaticequation is used for



the complementary solution and thus the computer
program for the present formulations can beeasily
implemented from any available program for elastostatic
problems by including the Houbolt time integration
scheme and the Newton-Raphson algorithm. While the
volume integrals due to inelasticity effect are still
necessary, the volume integrals for the inertial effect
are eliminated.

The present formulation wasverified by comparing the
results of four example problems with those by ABAQUS.
Generally good agreement among the results was
obtained. The present formulation needs to be extended
to a multi-region form for a large scale practical

application.

Appendix: Particular integrals for accelera-
tion term
By using Galerkin vector F, (Fung, 1965). the

particular integral for displacement u? related to the

acceleration term can be expressed as

1
Au? (x)= T AF,, (X)—jzz AF, ,(x) (A1)

where v is the Poisson’s ratio.
Substituting of Eq. (Al) into Eq. (4), without the
consideration of the initial stress term, vields

(1 - V) AFi,jle (X) = p Aij, (X) (A2)

By introducing the global shape function C,(x,&,)

in Eg. (8 and assuming

oo

AF, (x)=Y E,(x.§,)A¢ (&,) (A3)

n=1

Eq. (A2) can be written as

(I=-V)E; = PCy (A4)

By using the following functions

Cy (xign) = 5ik % (A - i‘) (AD)
E, (x’gn) =G0y u (EIA - Ez") rt (AB)

A« Adisorn Owatsiriwong « 73 %

and substituting Eqs. (A5) and (A8) into (A4), the
relationships among coefficients can be derived as

— 1 . E — 1
T8d 2+d)(1-v) T 15(1+d)(3+d)(1-v)
(A7)

where d is the dimensionality of the problem, that
is, 2(3) for two (three) dimensions.
Then the particular integrals for displacement,

stress and traction can be found as

ar(x) =S U, (x8,) A6, &) (A8)
ror(x) =Y 5,(x,2,)Ad, &) (A9)

ar (0= Y T (x5, A, 5,) (A10)

where
U,(x,8)=(U,A+U,7) 87" + U, A+U,r) v,y (A11)
Sikj(xﬁgn) = 5gye'( (SIA + SZ")+

yiyjyk (AIZ)

(é‘iky; + 5}&)’;) (8, 4+8,r)+S;

Ty (%,8,) =8, (%8,) n;(x) (A13)

U, =22Q+d)a-v)-1}E,
U, =~ -;-{2(3 +d)(1-v)-1}E,

15
U3 =—4E1 U4 =?E2

S, =AU, + (1 + U, }+2uU,
S, = ApU, + 2+ d)U, b+ 2uU,
S, =uQU,+U,) : S, =u@U,+U,) S, =2uU,
n,(X) =unit normal at x in the j-th direction.
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