• Title/Summary/Keyword: integral distribution

Search Result 427, Processing Time 0.021 seconds

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

Comparison of Force Calculation Methods in 2D and 3D Finite Element Method

  • Yan Xiuke;Koh, Chang-Seop;Ryu, Jae-Seop;Xie Dexin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.137-145
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method, are reviewed and the equivalence of them are theoretically proved. The methods are applied to the magnetic force calculation of 2D linear and nonlinear problems, and 3D nonlinear problem. As the results, the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater (혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구)

  • 김도삼;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

On the Wave Loads on a Large Volume Offshore Structure (대형해양구조물에 작용하는 파랑하중에 관하여)

  • 홍도천;홍은영;이상무
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 1987
  • The first order mation responses of a floating structure and the hydrodynamic forces in regular waves are obtained by means of the linear potential theory. The first order potential is obtained directly from the numerical solution of the improved Green integral equation which is characterized by the combined surface distribution of sources and normal doublets. The mean second order wave drift force is also calculated by means of the near field method. It seems that the present method gives more accurate numerical results than other methods and the agreement between numerical and experimental results appears to be satisfactory.

  • PDF

A New Approach to the Verification of a Message Protocol : Fuzzy Integral (퍼지적분을 이용한 메시지 프로토콜 검증)

  • Shin, Seung-Jung;Park, In-Kue
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1903-1910
    • /
    • 2000
  • The objective of this paper was to cope with the verification of the message transfer protocol that integrates the electronic signature and the distribution and authentication of public key in TCP/IP using fuzzy integral. They were classified into the security technology, the security policy, the electronic document processing, the electronic document transportation and the encryption and decryption keys in its function. The measures of items of the message security protocol were produced for the verification of the implemented document in every function.

  • PDF

Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates (평행평판내 비대칭 난류유동과 열전달의 예측)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF

Influence of various sources in micropolar thermoelastic medium with voids

  • Kumar, Rajneesh;Ailawalia, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.717-735
    • /
    • 2009
  • The present problem is concerned with the study of deformation of micropolar thermoelastic medium with voids under the influence of various sources acting on the plane surface. The analytic expressions of displacement components, force stress, couple stress, change in volume fraction field and temperature distribution are obtained in the transformed domain for Lord-Shulman (L-S) theory of thermoelasticity after applying the integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical domain. The numerical results are presented graphically. Some useful particular cases have also been deduced.

Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress (平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析)

  • 임장근;맹주성;김병용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.

Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity

  • Kumar, Rajneesh;Gupta, Rajani Rani
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.577-592
    • /
    • 2008
  • Laplace-Fourier transform techniques are used to investigate the interaction caused by mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of reference temperature. The integral transforms are inverted using a numerical technique to obtain the normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized thermoelasticity. Some particular cases are also deduced from the present investigation.

A M-TYPE RISK MODEL WITH MARKOV-MODULATED PREMIUM RATE

  • Yu, Wen-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1033-1047
    • /
    • 2009
  • In this paper, we consider a m-type risk model with Markov-modulated premium rate. A integral equation for the conditional ruin probability is obtained. A recursive inequality for the ruin probability with the stationary initial distribution and the upper bound for the ruin probability with no initial reserve are given. A system of Laplace transforms of non-ruin probabilities, given the initial environment state, is established from a system of integro-differential equations. In the two-state model, explicit formulas for non-ruin probabilities are obtained when the initial reserve is zero or when both claim size distributions belong to the $K_n$-family, n $\in$ $N^+$ One example is given with claim sizes that have exponential distributions.

  • PDF