• Title/Summary/Keyword: integral bridge

Search Result 130, Processing Time 0.029 seconds

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.

Response of integral abutment bridges under a sequence of thermal loading and seismic shaking

  • Tsinidis, Grigorios;Papantou, Maria;Mitoulis, Stergios
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.11-28
    • /
    • 2019
  • This article investigates the response of Integral Abutment Bridges (IAB) when subjected to a sequence of seasonal thermal loading of the deck followed by ground seismic shaking in the longitudinal direction. Particular emphasis is placed on the effect of pre-seismic thermal Soil-Structure Interaction (SSI) on the seismic performance of the IAB, as well as on the ability of various backfills configurations, to minimize the unfavorable SSI effects. A series of two-dimensional numerical analyses were performed for this purpose, on a complete backfill-integral bridge-foundation soil system, subjected to seasonal cyclic thermal loading of the deck, followed by ground seismic shaking, employing ABAQUS. Various backfill configurations were investigated, including conventional dense cohesionless backfills, mechanically stabilized backfills and backfills isolated by means of compressive inclusions. The responses of the investigated configurations, in terms of backfill deformations and earth pressures, and bridge resultants and displacements, were compared with each other, as well as with relevant predictions from analyses, where the pre-seismic thermal SSI effects were neglected. The effects of pre-seismic thermal SSI on the seismic response of the coupled IAB-soil system were more evident in cases of conventional backfills, while they were almost negligible in case of IAB with mechanically stabilized backfills and isolated abutments. Along these lines, reasonable assumptions should be made in the seismic analysis of IAB with conventional sand backfills, to account for pre-seismic thermal SSI effects. On the contrary, the analysis of the SSI effects, caused by thermal and seismic loading, can be disaggregated in cases of IAB with isolated backfills.

Calculation Correctio Factor of Bridge Capacity using Fuzzy Sets Theory (퍼지를 이용한 교량 안전도평가의 보정계수 산정)

  • 조원신;박기태;김상효;황학주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.240-244
    • /
    • 1992
  • The values of a linguistic variable are words, phrases, or sentences in a given language. For example, structural damage can be considered as linguistic variable with values such a 'severely damaged', 'moderately damaged', which are meaningful classifications but not clearly defined, This paper is to evaluate reasonably the correction factor of bridge capacity with the aid of fuzzy sets theory. By using the above mentioned fuzzy measure, the concept of fuzzy integral and linear membership function can be defined. It is concluded that the fuzzy sets theory cam be applied to determine reasonably the correction factor of bridge capacity.

  • PDF

Behavior of Jointless Bridge of Steel Box Girder Type Due to Temperature Change (온도변화에 따른 무신축이음 강상자형 교량의 거동 분석)

  • 조남훈;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.95-102
    • /
    • 1997
  • Jointless bridge is a new construction method applicable to bridge of short length. In the jointless bridge expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. By removing expansion joint, it retards deterioration and extends life time of bridge. In this paper, jointless bridge of steel box girder type was studied through finite element analysis. Stress variations of superstructure and pile due to thermal effect was studied for the two span continuous integral bridge of 80m length and the results of analysis was presented.

  • PDF

Sound Radiation from Vibrating Bridges subjuct to Moving Vehicles (주행차량에 의한 교량의 동적거동과 음향방사특성)

  • 김상효;이용선;장원석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.45-51
    • /
    • 2002
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle 8 DOFs truck model and a 5-axle 13 DOFs semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. Although the noise produced by the bridge vibration is not serious in itself, which is below the audible frequency range, it should be considered as an interaction problem between vehicle noise and bridge vibration noise in order to evaluate the traffic noise around the bridge.

  • PDF

An investigation on the bearing capacity of steel girder-concrete abutment joints

  • Liang, Chen;Liu, Yuqing;Zhao, Changjun;Lei, Bo;Wu, Jieliang
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.319-336
    • /
    • 2021
  • To achieve a rational detail of the girder-abutment joints in composite integral bridges, and validate the performance of the joints with perfobond connectors, this paper proposes two innovative types of I-shaped steel girder-concrete abutment joints with perfobond connectors intended for the most of bearing capacity and the convenience of concrete pouring. The major difference between the two joints is the presence of the top flange inside the abutments. Two scaled models were investigated with tests and finite element method, and the damage mechanism was revealed. Results show that the joints meet design requirements no matter the top flange exists or not. Compared to the joint without top flange, the initial stiffness of the one with top flange is higher by 7%, and the strength is higher by 50%. The moment decreases linearly in both types of the joints. At design loads, perfobond connectors take about 70% and 50% of the external moment with and without top flange respectively, while at ultimate loads, perfobond connectors take 53% and 26% of the external moment respectively. The ultimate strengths of the reduced sections are suggested to be taken as the bending strengths of the joints.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.