• Title/Summary/Keyword: intake noise

Search Result 140, Processing Time 0.027 seconds

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

Sound Quality Improvement of Car Interior Noise Through the Change of Order Spectrum (차수 스펙트럼 변화를 통한 차실내부 음질 향상)

  • Shin, Sung-Hwan;Hashimoto, Takeo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.329-334
    • /
    • 2013
  • Order spectrum analysis is widely used to grasp the features of noises due to powertrain system including engine and intake/exhaust system. It is known from many previous researches that order components related to the first and second firing frequencies of engine considerably affect the noise of car interior. The purpose of this paper is to find out the difference in sound quality: Pleasantness of car interior noise according to the change of its order spectrum. For this, car interior noises of 6-cylinder and 4-cylinder engines are recorded and their order spectrum levels are modified by applying adaptive digital filters. After subjective listening test employing paired comparison method is conducted, it is investigated that the level change of half-order components is a noticeable factor to improve Pleasantness of the car interior noises whereas level decrease of firing order does not always give the positive effect on its sound quality.

On the selection of loads in the multi-load method for measuring in-duct source characteristics (덕트 내 음원 특성 측정을 위한 다중부하법의 부하 선택에 관한 연구)

  • Jang, Seung-Ho;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.384-388
    • /
    • 2000
  • One-port acoustic characteristics of an in-duct source can be measured by the multi-load method using an overdetermined set of open pipes with different lengths as applied loads. The input data. viz. load pressure and load impedance, are usually contaminated by measurement error in the actual measurements, which result in errors in the calculated source parameters. In this paper, the effects of the errors in the input data on the results have been studied numerically, varying the number of loads and their impedances in order to determine what combination of the loads will yield the best result. An error analysis is applied to each case of possible loads, which consist of open pipes. It is noted that, frequently, only a set of open pipes is used when applying the multi-load method to the intake or exhaust sides of internal combustion engines. A set of pipe lengths which cause the calculated results to be least sensitive to the input data error can be found when using open pipe loads. The present work is intended to produce guidelines for preparing an appropriate load set in order to obtain accurate source properties of fluid machines.

  • PDF

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Flow Characteristics of Liquid Ramjet Engines using Two Color PIV

  • Ahn Kyubok;Yoon Youngbin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.151-163
    • /
    • 2001
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distributions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a signal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones, intake air mixing and turbulent kinetic energy have been investigated varying inlet angles and dome heights. It was found that the primary recirculation zone is affected mainly by the dome height, whereas the secondary recirculation zone is influenced by the air inlet angle.

  • PDF

Prevalence of Insomnia and Its Related Factors in Korean Women

  • Shin, Su Jin;Shin, Kyung Rim
    • Korean Journal of Adult Nursing
    • /
    • v.19 no.5
    • /
    • pp.150-161
    • /
    • 2007
  • Purpose: The purposes of this study were to investigate the prevalence of insomnia and to compare sleep patterns, demographic characteristics, and obstacles for sleep between women with and without insomnia. Methods: This was a descriptive study. Study participants were 1,679 Korean women aged over 20 years. Information on symptoms of insomnia, sleep patterns, and related factors was assessed by questionnaire. Symptoms of insomnia included difficulties in initiating and maintaining sleep and early morning awakening. Results: This study found that 32.0% of the study participants had insomnia, subjects with insomnia had bad sleep patterns compared to comparison group, lower educational level and menopause were closely related to insomnia, and noise, temperature, lighting, presence of bed partner, intake of caffeine, frequent urination, and pain or itching were associated with insomnia. Conclusion: This study suggests that insomnia is prevalent in women and closely associated with education level and menopausal status.

  • PDF

The Standard of Sump Design in Pump Station (펌프장내 흡수정 설계 기준)

  • Roh, H.W.;Oh, O.S.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.589-592
    • /
    • 2005
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Unfortunately in order to design the sump station, the reasonable code or the standards weren't presented yet in Korea. Thus, some researchers had often referred the HI code, JSME code or CEN code to design the sump station. This study aims to prescribe the standard of sump design which were matched well the Korean pump station. Thus, the HI code and TSJ code would be interpreted fully to Korean language, the part of interpreted clauses of the western codes would be selected to compose the standard.

  • PDF

Cohort Study for the Effect of Chronic Noise Exposure on Blood Pressure among Male Workers (만성적 소음노출이 혈압에 미치는 영향에 대한 코호트연구)

  • Cha, Tae-Joon;Kim, Jang-Rak;Kang, Wee-Chang;Yaang, Seung-Rim;Lee, Choong-Ryeol;Yoo, Cheol-In;Lee, Ji-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.3
    • /
    • pp.205-213
    • /
    • 2002
  • Objective : Whether exposure to chronic noise induces an increase in blood pressure, or the development of hypertension, has not been established. A cohort study was performed to identify the effects of chronic noise exposure on blood pressure. Methods : 530 males working at a metal manufacturing factory in Busan, Korea were enrolled for the study. They were monitored for 9 consecutive years, from 1991 to 1999, with an annual health check-up. The subjects were divided into 4 groups, which were determines by noise level categories(NLC) according to noise intensity ; NLC-I: office workers, exposed to noise a level below 60dB(A) ; NLC-II: field technical supporters or supervisors, frequently exposed to workplace noise, wearing no hearing protection device; NLC-III: workers, exposed to workplace noise below 85dB(A), wearing ear plugs or muffs; NLC-IV: workers, exposed to workplace noise over 85 dB(A), wearing both ear plugs and muffs. Results : After controlling possible confoundens, such as baseline age, smoking, alcohol intake, exercise, family history of hypertension, systolic(SBP) of diastolic blood pressure(DBP) and changes in BMI (body mass index), the pooled mean for the systolic blood pressures, over the duration of the study period, were 3.8mmHg, 2.0mmHg and 1.7mmHg higher in NLC-IV, NLC-III NLC-II groups, respectively, than in the NLC-I group. There were no significant differences in the diastolic blood pressures between the groups. Conclusion : This study suggests that chronic noise exposure increases systolic blood pressure independently, among male workers.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Effect of Glucose Level on Brain FDG-PET Images (FDG를 이용한 Brain PET에서 Glucose Level이 영상에 미치는 영향)

  • Kim, In-Yeong;Lee, Yong-ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.275-280
    • /
    • 2017
  • In addition to tumors, normal tissues, such as the brain and myocardium can intake $^{18}F$-FDG, and the amount of $^{18}F$-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting $^{18}F$-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0.84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using $^{18}F$-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.