• Title/Summary/Keyword: insulin receptor

Search Result 338, Processing Time 0.022 seconds

Association of Insulin-related Genes Expression with Carcass Weight in Loin Muscle of Korean Cattle (Hanwoo) (한우 등심조직 내 인슐린 조절 유전자의 발현이 도체중에 미치는 영향에 관한 연구)

  • Lim, Dajeong;Cho, Yong-Min;Chai, Han-Ha;Lee, Seung-Hwan;Choi, Bong-Hwan;Kim, Nam-Kuk
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • The peroxisome proliferator-activated receptor (PPAR) signaling pathway is well known as a candidate pathway related to meat quality in mammals. In particular, there are many studies on the relationship between the PPAR signaling pathway and intramuscular fat. However, recent studies have demonstrated that genes in the PPAR signaling pathway are associated with carcass weight in cattle. Among 48 genes in the PPAR signaling pathway, 16 genes are related to the insulin that regulates the adipocyte glucose metabolism and thus affects body weight. Therefore, we conducted an investigation to try to identify candidate genes associated with the carcass weight and relationships between the expressions of these 16 genes in the loin muscle of Hanwoo (Korean cattle). From regression analysis, the three genes (ACSL6, FADS2, and ILK) showed significant effects with regard to carcass weight (p<0.05). Finally, we analyzed the common regulators of the significant genes from pathway analysis. The significant genes are regulated by insulin as well as D-glucose. These findings show that the differentially expressed genes are possible candidate genes associated with carcass weight in the longissimus muscle of Korean cattle.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Effect of Fish Meal Replacement on Insulin-like Growth Factor-I Expression in the Liver and Muscle and Implications for the Growth of Olive Flounder Paralichthys olivaceus (사료의 어분함량대체가 넙치(Paralichthys olivaceus)의 간과 근육 내 인슐린유사성장인자의 발현과 체성장에 미치는 영향)

  • Park, Su-Jin;Moon, Ji-Sung;Seo, Jin-Song;Nam, Taek-Jeong;Lee, Kyeong-Jun;Lim, Sang-Gu;Kim, Kang-Woong;Lee, Bong-Joo;Hur, Sang-Woo;Choi, Youn Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • This study examined the effect of insulin-like growth factor (IGF)-I expression in the liver and muscle on the growth of Paralichthys olivaceus fed diets low in fish meal. A feeding experiment was conducted at Jeju National University, Jeju Island, Korea. Groups of P. olivaceus (total initial weight: 200 g) were maintained for 20 weeks on one of five experimental diets containing different proportions of fish meal. Diets containing 0%, 20%, 30%, 40%, and 50% fish meal were labeled FM0, FM20, FM30, FM40, and FM50, respectively. Fish growth was observed every 4 weeks during the feeding experiment, and plasma and liver and muscle tissues were sampled. Plasma IGF-I levels were analyzed using an ELISA kit. The mechanism of IGF-I receptor signaling was examined using immunoblotting and reverse transcription-polymerase chain reaction. The greatest total weight increase was observed in the FM30 group. In parallel, plasma levels of IGF-I and IGF-binding protein were highest in the FM30 group, and mRNA and protein expression were also significantly higher in this group. The first step in the IGF-I signaling pathway, tyrosine-phosphorylation checking, occurred smoothly until 20 weeks. These results suggest that a dietary ratio of 30% fish meal best promotes growth in this species. The IGF-I signaling pathway in the liver and muscle is associated with growth in P. olivaceus.

Association between PPARGC1A Genetic Polymorphisms and Type 2 Diabetes Mellitus in the Korean Population (한국인 대상의 PPARGC1A 유전적 다형성과 제2형 당뇨병과의 상관성)

  • Jin, Hyun-Seok;Park, Sangwook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.81-87
    • /
    • 2021
  • The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. T2DM is one of the most common types of diabetes and is caused by increased insulin resistance and reduced insulin secretion. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PPARGC1A) is a master modulator of mitochondrial biogenesis and of gluconeogenesis in liver. In this study, we analyzed genetic polymorphisms of PPARGC1A gene in a middle-aged Korean population with T2DM. Using the genotype data of 736 T2DM cases and 4544 healthy controls obtained from the Korean Association Resource (KARE), we analyzed genetic correlations between single nucleotide polymorphisms (SNPs) of PPARGC1A and T2DM. Fifteen SNPs of PPARGC1A demonstrated a statistically significant association with T2DM. Of these, rs10212638 exhibited the strongest correlation with T2DM (P-value=0.015, OR=1.29, CI=1.05~1.59), and the minor G allele of PPARGC1A increased the risk of T2DM. This is the first study to report a significant association between genetic polymorphisms in PPARGC1A and T2DM and suggests that SNPs of PPARGC1A display genetic correlations to the etiology of T2DM.

Anti-Obesity Effects and the Regulation of Energy Metabolism in Skeletal Muscle Tissues of Allii Fistulosi Bulbus Extract in High Fat Diet-Induced Obesity Mice (총백추출물의 고지방식이 유도 비만 마우스에서의 항비만 효과 및 근육조직에서의 에너지대사 조절기전 연구)

  • Yoon Yong Choi;Hyeon Soo Lee;Su Yeon Baik;Sumin Lim;Hyo Won Jung;Seok Yong Kang;Yong-Ki Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Objectives: We investigated the effects of Allii Fistulosi Bulbus (AFB) on high fat diet (HFD)-induced obesity in mice and the regulation of energy metabolism in muscle tissues of mice. Methods: The C57BL/6 mice (6 weeks, male) were fed a HFD for 8 weeks and then administrated with AFB extract at 500 mg/kg (p.o.) once daily for 4 weeks. The body weight (BW), muscle weight, calorie intake, fasting blood glucose (FBG) and serum glucose, insulin, and low-density lipoprotein-cholesterol (LDL-C) levels were measured in mice. It was also observed the histological changes of pancreas, liver, and fat tissues with hematoxylin and eosin staining. It was investigated the phosphorylation of insulin receptor substrate 1 (IRS-1), Ser/Thr kinase (AKT), and adenosine monophosphate-activated protein kinase (AMPK), and the expression of phosphoinositide 3-kinase, glucose transporter type 4 (GLUT4), and sirtuin1 (Sirt1) in gastrocnemius tissues by western blot, respectively. Results: The increases of BWs, calorie intakes and FBG levels in obesity mice were decreased significantly by the administration of AFB extract. The AFB extract administration was reduced significantly serum levels of glucose, insulin, and LDL-C in obesity mice. The AFB extract inhibited lipid accumulation in liver tissues, hyperplasia of pancreatic islets, and enlargement of fat tissues in obesity mice. The phosphorylation of IRS-1 and AKT was increased significantly in muscle tissues and AMPK phosphorylation and the GLUT4 and Sirt1 expression were decreased significantly in muscle tissues after the AFB administration. Conclusions: Our study indicates that AFB extract improves symptoms of obesity through regulation of energy regulating proteins in muscle tissues.

Determination of Total Chiro-inositol Content in Selected Natural Materials and Evaluation of the Antihyperglycemic Effect of Pinitol Isolated from Soybean and Carob

  • Kim, Jung-In;Kim, Jae-Cherl;Joo, Hee-Jeong;Jung, Suk-Hee;Kim, Jong-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.441-445
    • /
    • 2005
  • Pinitol and chiro-inositol exert insulin-like effect by mediating post-receptor signaling pathway. Total chiro-inositol concentrations, including pinitol, chiro-inositol, and their derivatives, were determined in 115 natural and food materials to identify economical sources for mass production of pinitol. Carob pod, Bougainvillea, soy whey, and soybean oligosaccharides were rich sources of chiro-inositol. Pinitol was isolated from soy whey and carob pod, considered as economically viable sources, by chromatographic separation using activated carbon. Soy and carob pinitols had same chemical structure as that of reference pinitol based on HPLC and NMR results. Oral administration of soy pinitol and carob pinitol (10 mg/kg) significantly decreased blood glucose at 2-6 hr in streptozotocin-induced diabetic rats. These results suggest pinitol isolated from soy whey and carob pod could be beneficial in controlling blood glucose in animal model of diabetes mellitus.

Effects of Zinc on Lipogenesis of Bovine Intramuscular Adipocytes

  • Oh, Young Sook;Choi, Chang Bon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1378-1382
    • /
    • 2004
  • Zinc (Zn) is a micromineral and functions as a cofactor of many enzymes and its deficiency induces retardation of growth and dysfunction of the immune system in animals. This study was conducted to determine lipogenic activity of Zn in bovine intramuscular adipocytes. Preadipocytes were isolated from intramuscular fat depots of 26 month old Korean (Hanwoo) steers and cultured in media containing Zn. At confluence, the cells were treated with insulin, dexamethasone, and 1-methyl-3-isobutyl-xanthine to induce differentiation (accumulation of lipid droplets in cells). The sources of Zn were zinc chloride (${ZnCl}_2$) and zinc sulfate (${ZnSO}_4$), and the final concentrations of both Zn sources were 0, 5, 25, 50 and 100 ${\mu}$M. Glycerol-3-phosphate dehydrogenase (GPDH) activity, an index of adipocyte differentiation, was increased as the concentration of Zn in media increased showing the highest activity (25.74 ng/min/mg protein) at 25 ${\mu}$M of ${ZnSO}_4$. Supplementation of Zn during differentiation of bovine intramuscular adipocytes tended to decrease the production of nitric oxide (NO). Peroxisome proliferator-activated receptor gamma 2(PPAR$\gamma$2) gene expression was increased 10 days after differentiation induction. The current results indicate that Zn has a strong lipogenic activity in cultured bovine intramuscular adipocytes with remarkable suppression of NO production.

Genome-wide DNA Methylation Profiles of Small Intestine and Liver in Fast-growing and Slow-growing Weaning Piglets

  • Kwak, Woori;Kim, Jin-Nam;Kim, Daewon;Hong, Jin Su;Jeong, Jae Hark;Kim, Heebal;Cho, Seoae;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1532-1539
    • /
    • 2014
  • Although growth rate is one of the main economic traits of concern in pig production, there is limited knowledge on its epigenetic regulation, such as DNA methylation. In this study, we conducted methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) to compare genome-wide DNA methylation profile of small intestine and liver tissue between fast- and slow-growing weaning piglets. The genome-wide methylation pattern between the two different growing groups showed similar proportion of CpG (regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence) coverage, genomic regions, and gene regions. Differentially methylated regions and genes were also identified for downstream analysis. In canonical pathway analysis using differentially methylated genes, pathways (triacylglycerol pathway, some cell cycle related pathways, and insulin receptor signaling pathway) expected to be related to growth rate were enriched in the two organ tissues. Differentially methylated genes were also organized in gene networks related to the cellular development, growth, and carbohydrate metabolism. Even though further study is required, the result of this study may contribute to the understanding of epigenetic regulation in pig growth.

Interaction between IGFBP-5 and TNFR1

  • Kim, Eun-Jung;Jeong, Mi-Suk;Hwang, Jae-Ryoung;Lee, Je-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2019-2024
    • /
    • 2010
  • Insulin-like growth factor binding protein 5 (IGFBP-5) plays an important role in controlling cell survival, differentiation and apoptosis. Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor 1 (TNFR1). To determine whether IGFBP-5 and TNFR1 interact as members of the same apoptosis pathway, recombinant IGFBP-5 and TNFR1 were isolated. The expression and purification of the full-length TNFR1 and truncated IGFBP-5 proteins were successfully performed in E. coli. The binding of both IGFBP-5 and TNFR1 proteins was detected by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, electron microscopy, and size-exclusion column (SEC) chromatography. IGFBP-5 indeed binds to TNFR1 with an apparent $K_D$ of 9 nM. After measuring the fluorescence emission spectra of purified IGFBP-5 and TNFR1, it was found that the tight interaction of these proteins is accompanied by significant conformational changes of one or both. These results indicate that IGFBP-5 acts potently as a novel ligand for TNFR1.

Troglitazone Lowers Serum Triglycerides with Sexual Dimorphism in C57BL/6J Mice

  • Jeong Sun-Hyo;Yoon Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Thiazolidinediones (TZDs) are widely used antidiabetic drugs that activate the nuclear peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$, and thereby improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin resistance, and cardiovascular disease. To determine whether the $PPAR{\gamma}$ ligand troglitazone regulates lipid metabolism with sexual dimorphism, we examined the effects of troglitazone on circulating lipids, body weight and the expression of hepatic genes responsible for lipid metabolism in both sexes of C57BL/6J mice. Compared to mice fed a low fat control diet, both sexes of mice fed a troglitazone-treated low fat diet for 14 weeks did not exhibit changes in body weight gain, serum total cholesterol, HDL-cholesterol and LDL-cholesterol levels. However, serum triglycerides were significantly reduced in both sexes of mice, although these effects were more pronounced among males. Furthermore, troglitazone regulated the expression of hepatic genes critical for lipid and lipoprotein metabolism, the magnitudes of which were much higher in males compared to females, as evidenced by results for increased acyl-CoA oxidase and decreased apolipoprotein C-III mRMA levels. These results suggest that $PPAR{\gamma}$ activator troglitazone may exert sexually dimorphic control of serum triglycerides in part through the differential activation of $PPAR{\gamma}$ in liver between male and female mice.

  • PDF